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Abstract

This Diploma Thesis will extend the Model Checking capabilities of CTL

to the temporal description logic ALCCTL, and use it to verify properties of
web documents.
The main goal is to implement two different approaches: To reduce an
ALCCTL model and ALCCTL formulas to CTL so that the model check-
ing tools for CTL can be used, and to re-implement the CTL model checking
algorithm for ALCCTL. The performance and usability of each approach will
be measured and analysed in the course of this work.
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Chapter 1

Introduction

This Diploma Thesis seeks solutions to the model checking problem for tem-
poral description logics. In the course of this work I will develop such solu-
tions for the temporal description logic ALCCTL.

The temporal description logic ALCCTL has been developed from the
temporal logic CTL and the description logic ALC by Prof. Dr. Burkhard
Freitag and Dipl.-Inf. Franz Weitl [WF04a]. The goal was to combine the
expression power of description logics with that of branching-time temporal
logics and to harness it for representing and verifying semantic properties of
web documents, while still keeping the language decidable.

The goal of this Diploma Thesis is to implement the Model Checking
problem for ALCCTL. Model checking is the process of verifying properties
against a model. In this case, I will only regard certain types of models,
namely web documents used for web-based training (WBT) or E-Learning.
The primary source for such documents will be WWR! documents, coded in
Lmml?.

The checking of web documents, particularly WBTs, has been one of the
primary use-cases since the development of ALCCTL and its predecessors
begun at the University of Passau [WF04c|. Due to their complex structure
and potential large size, they represent a major challenge that will test the
limits of any verification environment. On the other hand, it is also very
tedious — at best — to verify structural properties of web documents manually.
An automated approach would make life easier, and might possibly even
improve the overall quality of such documents. This promises to be especially
useful for E-Learning documents that inherently have many important and
verifiable properties and require a high degree of correctness at the same

! Wissenswerkstatt Rechensysteme (Knowledge Factory for Computer Systems),
http://www.wwr-project.de/
2Learning Material Markup Language, http://www.lmml.de
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time.

A part of this correctness can already be achieved by defining a syntactical
corset to which the WBT source documents can be made to conform to. In
terms of XML, this might be a document type definition (DTD) or an XML
schema definition (XSD). Checking a document against such a definition is
a way to ensure correctness on a very basic level: Its main use is to enforce
a valid structure and some restrictions on the content. On the same level,
automatic checking for e.g. invalid references and the like can be performed.
But to validate a document on a semantic level, e.g. to ensure that there
is an example available for every definition, more complex techniques are
required. ALCCTL model checking is one such technique.

Why use a temporal description logic for web documents in the first
place? Because the narrative structure of such documents can be easily
represented as a branching-time temporal model! Put yourself in the place
of the reader/user of such a document: You start reading at the beginning,
follow the general structure, branching off at times, following links forwards
and backwards, thus skipping or repeating sections, and you finally reach
an end point. What you did was to follow one of many (possibly infinite)
available paths through the document. Using a temporal model, it is now
possible to represent all of those paths and to reason about them. On the
other hand, the description logics (DL) part of the temporal description logic
is very useful when it comes to actually expressing properties about specific
pages, such as referencing definitions or examples. In short, description logics
can describe the pages of a web document, while temporal logics can describe
the connections between them [WF04a, WF04b, WF04c].

In order to be able to verify properties against a model, three things are
needed: First, a representation of the model. Second, a representation of the
properties (usually in the form of a formula). And third, a method to check
the formula against the model. I will describe how an ALCCTL model can be
implemented, how such a model can be extracted from an E-Learning source,
how an ALCCTL formula can be modelled, and, mainly, how model checking
can be done with such a model and such a formula. In the course of this
work I will develop two different approaches to solve this primary problem.

One such approach is to reduce the entire ALCCTL structure to CTL and
use the existing model checking tools for CTL. The main problem here is
that the reduction scales exponentially to the interpretation domain A’.
The other possibility is to implement the model checking algorithm for
ALCCTL. The CTL variant does not allow for sets or for roles. This has
to be taken into account when implementing the formula structure and the
algorithm itself for ALCCTL. Another problem is finding a useful counter
example in case the formula does not hold against the model: The user will
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probably want to know why it does not hold.

Literature research has shown that there are no alternate solutions for
this particular problem, against which the solutions of this thesis could be
measured. There are, however, various CTL model checking approaches.
Most are based on ordered binary decision diagrams [McM93, CCGRO00],
but there are also methods using the satisfiability problem SAT [BCCZ99,
CCGR+02]. Using model checking on web documents has been proposed
by e.g. [SFC98]. Nonetheless, using model checking on a combination of
description logics and temporal logics to verify properties of web documents
has not been implemented before. It will be interesting to see whether one
(or possibly both) of the proposed approaches to model checking ALCCTL
can be used for problems from the real world.
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Chapter 2

Basics

First, I would like to cover the technical basics. I will define the terms
Description Logics and Temporal Logics. Then I will describe the syntax
and use of the language CTL. I will proceed to explain what model checking
is, and how it is done with CTL. After that, I will show how ALCCTL and
CTL are related, and where ALCCTL surpasses its ancestor. Finally, I will
provide a brief overview about the web document definition languages Lmml
and <M L3>.

Verification in general requires a model of the system — in this case, of the
web documents — and a specification of the properties that are to be verified
against that model. CTL offers a formal way to define a model, and it allows
for the definition of properties.

Both CTL and ALCCTL have separate specifications for models and proper-
ties. Properties are defined in the way of formulas, with ALCCTL formulas
being more powerful than CTL formulas.

2.1 Description Logics and Temporal Logics

Definition 1 (Description Logics) An elementary Description Logic
(DL) is a fragment of a predicate logic without functions, with only unary
and binary operators, and with at most two different variables. While the
DL itself does not have variables, its syntax can be mapped to that of the
predicate logic.

A DL-system contains a list of terminology (usually referred to as a “TBoz”)
and a list of assertions (usually referred to as an “ABox”). The ABox-
assertions use the contents of the TBoz.

The ABox consists of both atomic concepts and atomic roles. Atomic con-
cepts refer to sets of objects, while atomic roles specify binary relations be-

13
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tween objects. Both are denominated by names, concepts conventionally by
nouns (written with a capital first letter), and roles conventionally by verbs
(written in all lower case).

Valid DL concepts are T, L, A, =A, C; M Csy, VR.C, AR.T, where A is an
atomic concept, R is an atomic role, and C is a DL concept. For a definition
of the semantics, see definition 9 in chapter 2.4.

The interpretation function I assigns each concept a subset of the interpre-
tation domain A!, while it assigns each atomic role a subset of the binary
relation AT x A, Since roles are usually bound by a quantor, the general
signature of I is C* C Al where C is a concept [Fre03].

Definition 2 (Temporal Logics) A Temporal Logic models time as a se-
quence of states. There are two distinctions to be made about the view of
time. First, whether it is linear or branching, and second, whether it is dis-
crete or continuous. Branching time allows different futures, or alternate
time lines. The temporal logics that will be used in this Diploma Thesis han-
dles time as branching and discrete.

Temporal logic employs the usual Boolean operators, but introduces some ad-
ditional modal (or temporal) operators like X, F, G or U (see definitions 7
and 9 in chapter 2.4 for details and the semantics) [HRO00].

2.2 CTL

CTL is a discrete branching-time temporal logic. It employs the usual
Boolean operators, as well as some temporal operators.

Valid CTL formulas ¢ are T, L and p, where p is any valid predicate. Valid
formulas are also the negation of a formula (—¢), as well as the conjunction,
the disjunction and the implication between two formulas (¢; A ¢o, ¢1 V o,
®1 — ¢2). Those are the standard Boolean operators; more interesting are
the following temporal operators.

In order to understand temporal operators, it is advisable to regard the
temporal structure of CTL first. CTL uses a discrete temporal model that is
often visualised by a state-transition diagram. The states represent different
points in time, while the transitions represent possible branchings of the time
line, thus modelling different possible futures for each state. Predicates are
annotated to each state where they are valid.

As an example, regard a web document that has an introduction, a sec-
tion defining a Deterministic Finite Automaton (DFA), a section stating an
example of a DFA, and a conclusion. The reader can skip the example after
the definition and proceed directly to the conclusion. This document can be
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defDFA exaDFA

refDFA

refDFA

Figure 2.1: A CTL example model with four states.

represented as a temporal model, where the different sections are points in
time, and the structure consists of the possible time-lines (or the state tran-
sitions) [SFC98]. Thus, the document can be modelled as a system with the
states Sintro, Spefs SEza ANA Scone, With transitions between s7,4, and spey,
Spef aNd Sggzq, Sper aNd Scone, and Spgye and Scone. Since in a CTL model
every state needs to have at least one successor, there is also a transition
between scone and Scone itself. The predicate def DF A, which indicates that
a DFA is defined in the current state, is annotated to the state sp.s, while
the predicate exaDF' A is annotated to the state sg,,. Figure 2.1 illustrates
this model.

Temporal operators in CTL always consist of two letters: First an A or
an F, followed by a second one. The A can be described as a temporal
all-quantor: It means that for a formula to be true, it must be true for all
possible futures. In our example, regarding state sp.s, a formula would have
to hold in both sg,, and scone for A to hold. E on the other hand resembles a
temporal existence-quantor: The formula has to hold for at least one possible
future, either sg., Or Scone in the example above.

For the second letter, there are several possibilities. The first is the letter

X, which stands for next. It means that a formula only has to hold in exactly
the next state, and nothing is said about any other states. If it has to hold
in only one next state or in all of them (since there are branching time lines,
a state may have more than one immediate successor) depends on the first
letter (A or E).
Another possible letter is F', for future, which means that the formula must
hold in some future state - not necessarily the next one. The combination
EF could thus be interpreted as “at some time”, it is the most unspecified
operator.
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The letter G (globally) is more general: It requires the formula to hold in
every single following state - whether on all or just one time line depends as
usual on the first letter. AG can be interpreted as “all the time”.
The second last possibility is the letter U: The until-operator. It expects
two arguments E [¢ U ¢o] or A [¢p1 U ¢] and means that ¢; has to hold until
— at some point — ¢o holds.
Finally, B stands for the before-operator. It is binary as well and means that
¢1 has to hold at least once before ¢, does [HR00].

Let’s have a look at some examples. A formula that says “There has to be
an example of a DFA somewhere” could be written in CTL as FF exaDF A.
A formula that says “There must be an example of a DFA in the next state
(e.g. paragraph)” can be written as FX exaDF A. However, it will only be
valid in state spr, since no other state has a direct successor with an example
in it. A bit more complicated would be a formula expressing “Anywhere there
must a DFA be defined either in the current or in the next state, until there
is an example of one”: A[(def DFA V EXdefDFA) UexaDFA.

Definition 3 (CTL Formula) A CTL formula ¢ has the following form:
b= LITIpl~6|6 A 6|6V 66 — ol
AX6|EX6|AloU 6| EloU ¢]| AGo| EGo| AFg| EF6|
Alp B ¢|| E[¢ B ¢|, where p is an atomic description.
Note that the operators Alpy B ¢o] and E[¢py B ¢s| are usually not included
in the formal definition of CTL formulas: They are abbreviations for

B[, U ¢o] and ~A[—¢1 U ¢o|, respectively [HROO, WF04a).

Definition 4 (CTL Model) A CTL model M consists of three parts.

First, a set of states S.

Second, a binary state-transition relation — that specifies at least one suc-
cessor for every state. Formally: Vs, € S : 3s; € S 1 s5; — s;. This implies
that there are paths with an infinite length, possibly even an infinite number
of them.

Third, a labelling function L that annotates all predicates to a state s that
are valid in that state. Formally: Vs; € S : L(s;) C AtomicDescriptions.
Thus, M = (S,—, L).

Note: Since an infinite number of objects cannot be represented with a com-
puter, I will only regard finite sets S.

Definition 5 (Semantics of CTL Operators) Let M = (S,—,L) be
some CTL model, and s € S. The question if a formula ¢ holds in s can
be written as M,s = ¢. = is defined by structural induction over all CTL
formulas in table 2.1 for a model M = (S,—,L), s € S, where p is an
atomic description [HR00].
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M,sET

(M, s = 1)

M,sEpiff pe L(s)

M,s):—'gbiff—'(M,s):gb)

M;sE¢1 N ¢ iff M, s = ¢ and M, s = ¢

M,skE ¢ V ¢ iff M,s = ¢y or M, s = ¢

M,;sE¢1 — ¢ ift =(M,s = ¢1) or M, s = ¢

M,s E AX¢ ift Vsy, with s — s1: M, 81 | ¢

M,s = EX¢ iff ds1, with s — 51 : M, s1 = ¢

M, s = AG¢ iff for all s; along all paths sy — 57 — s
— .., withsy=s:M,s; E ¢

M, s = EGg iff for all s; along some path s — 57 — s9
— .., withsg=s:M,s; E ¢

M, s E AF¢ iff on all paths s — s1 — s
— ..., with 59 = s, there is an s, : M, s; = ¢

M, s = EF¢ iff on some path sg — s — s9
— ..., with 59 = s, there is an s; : M, s; = ¢

M, s = A[éy U o] iff on all paths sg — 51 — s
— ..., with sg = s, there is an s; : M, s; = ¢,
and Vj <i: M,s; = ¢

M, s = E[¢1 U ¢9] iff on some path sg — s — s
— ..., with s9 = s, there is an s; : M, s; = ¢a,
and Vj <i: M, s; = ¢

Table 2.1: Semantics of CTL operators ¢
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2.3 CTL Model Checking

Now that we know what a CTL model looks like and how a CTL formula
is specified, we can advance to the actual model checking technique. Model
checking is the process of verifying a formula against a model. There is a
standard algorithm for CTL that accomplishes this task. The principle of
this algorithm is fairly simple: You start with the innermost part of the
formula and annotate it to all the states where it is valid. Now you work
your way outward, annotating ever more complex sub-formulas, until you
have annotated the whole formula. Finally, all you have to do is check to
which states you annotated the whole formula — those are the ones where the
formula holds.

Let’s regard our example (figure 2.1) from the last section again, and check
the formula A[(def DFA vV EX defDFA) UexaDF A against it. The two
predicates def DFA and exaDF A are already annotated, so we can skip
them, and take the next outward step.

The right-hand side of the U is already done, but there is still some work on
the left-hand side: def DFA V EXdefDFA. def DF A is behind us now,
so we start with the innermost sub-formula that is one step up from that:
EX def DFA. We know all the states where def DF A is annotated (namely,
Spef), SO it’s easy to find all states that are immediate predecessors to those
states: Srnro. Therefore, we annotate the sub-formula EX def DF A to the
state Spuro (see figure 2.2).

Now we can regard the entire part def DFA V EXdefDFA. Again, we
know where its sub-formulas are valid (we just finished with the last one,
EX defDFA), so all we have to do is to find all states where either the left
sub-formula is true, or the right one. In Sy,i., def DF A is not annotated
(which means that the predicate does not hold there). However, since it is
annotated to its successor sp.s, EX def DF A is annotated in Sy, There-
fore we can annotate the disjunction to both sp,, and spey. It can easily
be seen that it does not hold in the two other states (see figure 2.3).

The next step is to annotate the whole formula: We have to find all states
where A [sfi U sfs] holds, with sf; and sfy being the two sub-formulas we
already checked. A brief look at the definition of the AU operator will reveal
that the formula is indeed valid in all states but the last one, sgon.. That is to
be expected, since there are no more states after it where the until-condition
could be satisfied (see figure 2.4).

Definition 6 (CTL Model Checking) CTL model checking is the process
of deciding whether M,s = ¢, for some model M = (S,—, L), a state
s € S, and some CTL formula ¢. The selection of s is often limited to any
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EX defDFA defDFA exaDFA

refDFA

St
refDFA
Figure 2.2: CTL model checking (1).
EX defDFA defDFA exaDFA
defDFA v EX defDFA defDFA v EX defDFA refDFA
St
refDFA
Figure 2.3: CTL model checking (2).
EX defDFA defDFA exaDFA
defDFA v EX defDFA defDFA v EX defDFA refDFA
AL U..] AL U...] AL U ...]
S1

refDFA
Al.. U..]

Figure 2.4: CTL model checking (3).
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Sg, where sg is a starting state of M.

2.4 ALCCTL

So much for CTL. ALCCTL is a bit more complex than that. It is a com-
bination of CTL and description logics. Before I define a formula, I would
like to introduce a few basics about ALCCTL. ALCCTL deals primarily
with sets of objects instead of predicates. The potential elements of such a
set are pooled in the interpretation domain A’. For an E-Learning docu-
ment about automata theory, A’ might contain the objects that are subjects
of the document: DFA (“Deterministic Finite Automaton”), NFA (“Non-
Deterministic Finite Automaton”) and T'M (“Turing Machine”). But it will
probably also contain objects that describe the different paragraphs of the
text, e.g. ChapterlSection2Paragraph3 or ParagraphExampleForNF A.
Scaling parameters (cf. chapter 2.5) can also be part of A’ for example
TargetGroupStudent, TargetGroupTeacher or IntensityAdvanced. Infor-
mally, A can be regarded as the base vocabulary of a model.

The next important thing about ALCCTL is the concept. It can have
a name (like “TopicO fDe finition”, or shorter “DefTopic”) and is inter-
preted, using an interpretation function I(s). Each concept is interpreted at
every state of a model, returning a set of objects (a subset of Af). Concept
“DefTopic” interpreted at state sp.; might yield the set {DFA, NFA} as
a result, formally: DefTopic!®rer) = {DFA, NFA}.

A concept is always the inner part of an ALCCTL formula. As such, it

is called a “state concept”. A basic state concept can be either T, L or an
atomic concept. T is the equivalent of the tautology for sets: It is always
interpreted as the entire interpretation domain A?. 1 is correspondingly
always interpreted as the empty set. An atomic concept is one that is ref-
erenced by name (such as “DefTopic”), and that does not need recursive
interpretation.
There are, however, other state concepts that operate on concepts. Since
concepts return — when interpreted — sets, it is not surprising that the union,
intersect and complement operators are among them: 1y L g, 1y T 1y
and — for state concepts . In addition, the temporal operators that we
already know from CTL are state concepts as well (with adjusted seman-
tics): AXv¢, EXv, Ay U], EFY and so on. The remaining two state
concepts originate in description logics rather than temporal logics. They
are the role concepts VR.% and dR.v, with R being an atomic role. In our
example (see above) a role might look like this: JtopicO f. Paragraph, while
its interpretation could return {“Example for an NFA”}.
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DefTopicl(s») = {DFA} ExaTopic(se = {DFA}
/‘\ RefTopicl(ss) = {DFA}
S " Sp M Sk

RefTopicl(sd = {DFA}

Figure 2.5: An ALCCTL model with several interpreted concepts.

A full ALCCTL formula is built on top of such concepts. A formula has
a Boolean value, as it does in CTL. Therefore, valid formulas ¢ include true,
false, =¢p, &1 AN @2, 1 V o and ¢1 — . The temporal operators
are defined for formulas as well. The connection to concepts is made by the
subset and equals operators: 1y T 10 and 11 = 1), are both valid formulas.
Here are a few more examples of ALCCTL formulas:

L C DefTopic (2.1)

DefTopic = ExampleT opic (2.2)

DefTopic C EX (ExampleT opic) (2.3)
DefTopic C EF (ExampleTopic) (2.4)

AG (DefTopic C EX (EzampleTopic U ParaTopic)) (2.5)
6)

-F [true U - (DefTopic C EX (ExampleTopic U ParaTopic))} (2.

Formula 2.1 is a tautology, since the empty set (to which L yields) is subset
of every set. Formula 2.2 demands that at every state, where some topic is
defined, there must be an example of it as well, and vice versa ( = ). If no
topic is defined, no example is required, but if more than one topic is defined,
there must be an example for every one. The same is true for zero or more
than one example: There must be the same number of definitions. Formula
2.3 is similar, except that the example must come in one of the successor
states, and that there may be examples of topics that have not been defined
(at least not in the state before). Formula 2.4 is less stringent, it allows
the example to be placed anywhere after the definition (E'F instead of EX).
Formula 2.5 requires that directly after each definition there must be an
example of it, or its topic must at least be discussed some more (ParaT opic
— topic of the paragraph). This must be true in every state for the formula
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to be true (AG). The last formula, formula 2.6, is equivalent to formula 2.5.
The AG operator has been replaced with a —E [true U —...] construct. This
expresses semantically exactly the same, but with a different syntax.

Definition 7 (ALCCTL Formula) An ALCCTL formula ¢ has the follow-
ing form:
¢ = true| false[~¢[o A ¢lo V ¢|d — ¢
AX9| EX0| AlpU ¢]| E[oU 9] | AGo | EGo| AF6| EF)|
Alp Bo|| E[¢ B ]| 11 C 2|1y = by, where ¢ is a state concept.
A state concept ¥ has the following form:
Ypu= T|L|IC[=[¢ M Paly U sl
AXY|EXY A U] E[Y U Y| | AGY | EGY | ARy | EF) |
Al BY] | E[Y BY||VRAp | IR |, where C is an atomic concept
and R is an atomic role.
Note that again the operators Al Bp,] and Ey)y Bs] are usually not in-
cluded in the formal definition of ALCCTL formulas: They are abbreviations
for = E[=)1 U s] and = A=)y U 1)), respectively [WF04a)/.

Definition 8 (ALCCTL Model) An ALCCTL model M consists of four
parts.

First, a set of states S.

Second, a binary state-transition relation — that specifies at least one suc-
cessor for every state. Formally: Vs; € S :3ds; € S 1 s; — s;. This implies
that there are paths with an infinite length, possibly even an infinite number
of them. — is also often denominated as R.

Third, an interpretation function I that interprets each concept locally at
any s € S and yields a subset of the interpretation domain A in return.
Formally: Vs; € S : C1s) C Al where C is a state concept. Al as the
interpretation domain is a state independant set of objects.

When interpreting a role R on ils own, the interpretation is specified as
RIG) C Al x A, This is only of indirect relevance for the state concepts,
howewver, since there it is always combined with either a ¥ or an 3, thus bind-
ing one of the two AL,

Fourth, the interpretation domain A itself.

Thus, M = (S, —,I,A!) [WF04a].

Note: Since an infinite number of objects cannot be represented with a com-
puter, I will only regard finite sets S and A'.

Definition 9 (Semantics of ALCCTL Operators) Let

M = (S, —,I,A") be some ALCCTL model, and s € S. The question if a
formula ¢ holds in s can be written as M, s |= ¢. = is defined by structural
induction over all ACCCTL formulas in table 2.2 for a model M, s € S,
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true : M, s |= true
false : —(M, s |= false)
—¢ M, s | = iff =(M,s = ¢)

Y1 C oty M, s =1y C oy iff @/J{(S) - ¢§(S)

Y1 = o M,sEY = ¢y iff wf(s) :Qﬂ;(s)

¢1 A ¢2: M,S):Qﬁl A (252 iHM7S|:¢1 andMﬂS):(z)Z
(bl V ¢25 M,S’:(bl V Qﬁgiﬂ‘M,S’:(ﬁl OI‘M,S’:(ﬁQ

§b1 - ¢2: M73):¢1 e ¢2 iﬂ‘_'(M,S):Qﬁ) OI‘M,S):QSQ

AXo: M,s = AX¢ iff Vsy, with s — s1: M, s; E ¢
EX¢: M,s = EX¢ iff ds1, with s — s : M, s1 = ¢
AGo¢ : M, s = AG¢ iff for all s; along all paths sg — 51 — $9
— .., withsg=s:M,s; E ¢
EG¢ : M, s = EG¢ iff for all s; along some path s — 51 — s9
— .., withsg=s:M,s; E ¢
AF¢ : M, s = AF¢ iff on all paths sg — s — s9
— ..., with s9 = s, there is an s; : M, s; = ¢
EF¢: M, s = EF¢ iff on some path sg — $1 — S
— ..., with 59 = s, there is an s; : M, s; = ¢
Alp1 U o) 0 M, s |= Al U ¢o] iff on all paths sg — 57 — 9
— ..., with s9 = s, there is an s; : M, s; = ¢o,

and Vj <i:M,s; = ¢

E[p1U¢o): M, s = E[p1 U ¢s] iff on some path sg — 57 — s9
— ..., with s9 = s, there is an s; : M, s; = ¢o,
and Vj <i:M,s; = ¢

Table 2.2: Semantics of ALCCTL operators for formulas ¢

where 1 is a state concept. Table 2.8 defines the semantics for ALCCTL
state concepts that are used in table 2.2. Let M = (S, —,1,Al), s € S and
C' be an atomic concept in table 2.3 [WF04a).

Definition 10 (ALCCTL Model Checking) ALCCTL model checking is
the process of deciding whether M,s = ¢, for some model M =
(S,—,I,Al), a state s € S, and some ALCCTL formula ¢. The selec-
tion of s is often limited to any sg, where sqg is a starting state of M.
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T: Tl(s) =def AI
1 J_I(S) —def @
C: 1) —def C1(s)
- (=) =y AN\
1 T1 Py (1 T 1)t =def w{(s) ﬂwé‘s)
Yr U b (Y U ahe)l® =4, {(S) Ulﬁg(s)
Alr Udpg] = Al U] =aep Ny e 0 —as, 10 € AT

Ji € Ny [a SRTAIN

Vi e N, <j <i — a€ zﬁf(sj))”
Ep U] : Bl Un)'®  =ser U, eso. s {a € AT

Ji e Ny [a SRS

. . . I(sj)
AXp (AX )1 N v NOSXI(? Cren ﬂ}
: ° —def $;ES, 5—5; %

EX4 - (EX )1 —des Uses,ss, 9109
AF - (AF)!) =gep A[T U
EFqy EEFw))j(()) =g E[T Uﬂf(f)
AGYY) AGY)1G =dey "EF-7¢
EGY : (EGy)!'®) =gey —AF—!()
VR4 : (VR.4p)1) =ds {a € AT|Vb.(a,b) € R'®) — be !}
R4 (AR.4)1) =4; {a € AT|3b.(a,b) € R A be !}

Table 2.3: Semantics of ALCCTL operators for state concepts ¥



25. LMML AND <M L3> 25

2.5 Lmml and <M L3>

Lmml* is an XML language that can be used to specify web documents,
particularly E-Learning documents. It provides ways to define the structure
and the content of such a document. The structure runs along two tracks:
On the one hand, it is the usual division into chapters and subsections. On
the other hand, it is a division into a number of learning units that are
each subdivided into several presentation units. Both structures are usually
closely related, but are used for different purposes [Sue05].

The content is written as text, with definitions, examples and so on in-
dicated accordingly. Images and animations can be inserted, as well as web
applications. L'mml not only supports direct referencing, but also semantic
references, i.e. references to a certain concept or learning objective [Sue05].

Yet the most striking and powerful feature of Lmml is its scalability.
There are four different scaling axes: The intensity (difficulty and extensive-
ness of the content), the target group (student or teacher), the context form
(script or slide variant) and the output medium (screen or paper). All con-
tent can be written for any combination of these variant options, allowing
for very specialised content, created with a minimum of effort [Sue05].

At the University of Passau, Lmml has been widely used to encode E-
Learning documents in the context of the WWR-Project? [WFG+04].

However, the “official” language of the WWR-Project is <M L3>3, an
XML dialect that is somewhat less powerful than Lmml, but easier to learn
for the novice. It offers less scaling options and fewer content distinctions,
while still being adequate for encoding web-based training data [KLT+04].

Learning Material Markup Language, http://www.lmml.de

2 Wissenswerkstatt Rechensysteme (Knowledge Factory for Computer Systems),
http://www.wwr-project.de/

3Multidimensional LearningObjects and Modular Lectures Markup Language,
http://www.ml-3.org/
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Chapter 3

Task

As mentioned above, the task of this Diploma Thesis is to facilitate model
checking for ALCCTL, with a use case in verifying properties of web docu-
ments. We now know the basics about ALCCTL, what model checking is,
and how to represent a web document as a temporal model. How is it now
possible to actually achieve model checking for ALCCTL?

Model checking for CTL is already routinely done, there are several tools for
that (e.g. Spin, SMV, NuSMV) [Hol91, CCGR00, McM93]. Those tools are
highly optimised, regarding both efficiency and usability. Since it is possi-
ble to reduce ALCCTL formulas and models to CTL, it might be possible to
capitalise on that. However, since such a transformation usually has its draw-
backs, the straight-forward approach of re-implementing the model checking
algorithm for ALCCTL should not be dismissed either.

3.1 Possible Approach I: Reduction

In [WF04a] there is a list of CTL equivalences for ALCCTL expressions.
Using these “translation templates”, it should be possible to reduce ALCCTL
formulas. Another matter is the model, where care must be taken to convert
the graph-structure of a typical ALCCTL model into the rather flat variant
expected by most CTL model checkers.

There is, however, a problem in principle. ALCCTL deals — at least on
the concept level — with sets, while CTL recognises only Boolean types. That
means that all sets, that is, all interpretations of concepts, must be expanded
to a list of Boolean expressions. This expansion must move along the line of
all possible elements of each set: Namely, A’. For a concept “definedTopic”
and AT = {DFA, NFA, TM}, those expressions might be DF A_is_Defined,
NFA_is_Defined and T M is_Defined. Doing this at every state and for

27
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every concept will enlarge the formula considerably. Obviously, this scales
badly: The formula grows exponentially.

3.2 Possible Approach II: Algorithmic

Implementing the model checking algorithm for ALCCTL avoids this prob-
lem. On the other hand, in the scope of this Diploma Thesis, it will be im-
possible to achieve a degree of optimisation even close to that of the model
checking tools for CTL. To find out if one effect offsets the other will be one
of the questions in my analysis.



Chapter 4

General Concepts and
Procedure

Now, how to go about this task? The first part is reading the model, that
is, extracting the ALCCTL model representation from an XML data source.
The second part is reading and processing the ALCCTL formulas, while the
third part is to actually check a formula against the model.

In theory, the XML source for the model could be any number of things.
However, for this particular task, I will only regard E-Learning documents,
namely documents encoded in Lmml and, to a lesser extend, <M L?*>. All
XML formats will be converted into a standard intermediary content format
which holds the content uniformly as lists of terminology, assertions and
states. Each presentation unit of the web document is represented as a
different state.

From this intermediary format the final model will be extracted. It con-
sists of a set of states, annotated with interpretations, predicates, roles and
a list of successors. It also includes a set of concepts: The interpretation
domain AL,

Preprocessing of the XML data files can be done via XSL transformation,

while the XML parsing can be handled with the Java 1.5 XML interface
JAXP.
The ALCCTL formulas can be parsed from simple Strings (or files of Strings).
It seems advisable to create a Java implementation of a formula that takes
all possible different aspects of ALCCTL formulas into account. This leads
to a basic formula object with descendants that represent different quantors
or logical operators, and a basic concept object with role- and temporal
quantors or set operators as inheritors.

29
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4.1 Model Extraction

When extracting the model, the interpretation domain A’ and both the
atomic concepts and the atomic roles need to be specified. A? will simply be
extracted from the local “vocabulary”, that is, from definitions, examples,
attributes and so on. Among the atomic concepts that can be extracted
will be de finedT opic and exempli fiedT opic (both of which yield to one or
more topics), while possible atomic roles are scaleTo (which relates scaling
information to fragments), hasScaling (which relates a fragment to scaling
information), topicO f and hasTopic (which relate a topic to a fragment and
vice versa), and definedAt and exemplified At (which connect a fragment
to a definition or an example). See appendix A.5 for a full listing.

During model extraction, the main operation for the model is adding:
States are added to the model, successors and interpretations are added to
states, etc. During model checking, the main operation is data retrieval, like
iterating over states or interpreting concepts. Those differences in perfor-
mance requirements should be reflected by the implementation. The seman-
tic model will make use of lists, which can be quickly expanded. The final
ALCCTL model will employ hash tables to simplify access.

A major problem in the extraction process is the handling of the various

scaling variants (see chapter 2.5). First, considering different variants, it is
possible that a model has more than one starting state (e.g. one each for
the screen and the slide variants, as seen in the Lmml Fuzzy module). Since
model checking can easily be done for more than one starting state, that is
not really an issue. More of a problem is the question of succession. Can
a state that is marked as “advanced” have a successor that is only “basic”?
Can a state that is marked as “basic” have a successor that is marked as
“basic” and “advanced”?
There are two extreme ways to tackle this problem: Integrating all variants
as closely as possible vs. separating them as much as possible. Maximum
integration guarantees compactness of the model, at the cost of losing most
of the benefits that prompted the scaling in the first place, such as target
group optimised content. Extreme separation on the other hand would lead
to a lot of duplicate data when e.g. all states that are marked as “basic” and
“advanced” would be split in two and put into two different branches of the
model. In fact, there would have to be a separate branch for every possible
combination of variants. For Lmml alone, that would be 24 paths.

I have chosen a middle approach that will hopefully combine the advan-
tages of both ways, while negating the disadvantages. All states will be
represented only once, so no splitting will occur, saving memory space and
processing time. However, the calculation of successor states will follow the
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basic basic basic
advanced madvanced
| -

Sl > Sz ' S3

advanced

Figure 4.1: Model states and their successors.

concept of maximum separation: A state marked as “basic” and “advanced”
will have two immediate successors — the next state that is marked “basic”
and the next state that is marked “advanced” (see figure 4.1). Additionally,
all scaling information will be annotated to the model states with the roles
scaleTo and hasScaling. This way, the structure of the model is preserved,
while the variants can still be clearly distinguished.

4.2 Implementation Method

Finally, there is the question of how to go about the implementation itself.
The established waterfall model and its derivates come to mind. However, I
have selected another approach, namely a variation of the rapid prototyping
model. T will create a first prototype as quickly as possible. This prototype
will have all the basic functionality of the final version, but not in the same
degree. It will support fewer operators, and offer only rudimentary support
for Lmml, and no support for <M L3> at all. Implementing and working
with this version will soon reveal the most obvious design flaws, with regard
to both the object oriented model and to the usability. These flaws will
determine the changes that are to be made for the next version. As much
of the source code as possible will be re-used, but everything that has to go
through major changes will be re-implemented from scratch.
This process will be repeated until the implementation appears sound, and
no more errors or design flaws are detectable. In retrospect, this state was
achieved after two major reimplementations and a few minor ones.

Why did I choose this somewhat exotic implementation method instead
of “doing it by the book”? There are several reasons for this. For one, I felt
that the waterfall method was unnecessary cumbersome for a project that
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E-Learning
Content
. R CTL
ALCCTL Model CTL Reduction Model Checker
ALCCTL
ALCCTL Formula Model Checking
Algorithm

Figure 4.2: Overview of the general procedure of model checking.

needed to respond flexibly to any possible changes (for example, the whole
counter example issue from chapter 6.4 was introduced into the project at a
rather advanced point). Another reason is that with the rapid-prototyping
approach, I was able to devote most of my time to the actual implementa-
tion. There were no extensive specifications to update when, for example,
at some point I decided to change the base of temporal operators. All the
time that would have gone into planning and preparation went directly into
problem solving and fine-tuning. The fact that since I started testing the im-
plementation, I have yet to find a single error is silent testimony to that. It is
likely, however, that someone with more experience concerning the waterfall
method might have spotted most of the problems beforehand. Nonetheless,
I still consider the trade-off worthwhile.

Last but not least, I was frankly curious if this approach would work for a
project such as this. My previous experience with programming has shown
this method to be very effective for small projects. As it appears, it can be
easily adapted to suit the needs of a thesis-level project as well. T do not
believe that it would be practical for large projects or for teams, though.
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4.3 Specification

Figure 4.2 shows a general overview of the procedure of model checking,
including both approaches.

Before any attempt at model checking can be made, there has to be a rep-
resentation of ALCCTL formulas and models, as well as a way to enter them
into the system. This representation can then be used for both approaches.

ALCCTL formulas have a tree-like structure: Each formula has one or
two subformulas or subconcepts, and each concept is either a leaf (atomic
concepts) or has one or two subconcepts. The operator EX for example
expects one parameter, while the operators EU and LT both expect two
parameters. The model checking algorithm makes use of this structure by
traversing the tree from bottom to top, and the reduction rules for CTL
are defined for tree-like nodes as well. Therefore it makes sense to give the
internal representation of a formula a tree structure. Any formula operator
can be the root element, followed by a subtree of any number of further
formula operators. At the end of each branch there must be either a T or
an = operator to make the transition from formula to concept level. Below
the T or = operator follows another subtree of concept operators, with
atomic concepts at the very end.

Since formulas will be present as text, there has to be a parser that can create
such a tree from the linear syntactical representation.

An ALCCTL model is an infinite graph of interconnected states. Each

state has a name, and a list of its direct successors. It also needs a way to
annotate the interpretations of concepts, as well as roles and formulas. The
model itself also has to include the interpretation domain A’.
Lmml is a very powerful language that offers the author of web documents
many different ways of expression, syntax abbreviations and other things.
That makes it rather hard to extract a uniform model from it. To make this
a little easier, I have decided to employ XSL! preprocessing. The original
XML content is transformed using several XSL stylesheets (one at a time)
into a more unified form of the same content. Instead of extracting the
ALCCTL model now, a generic semantic model can be extracted, which offers
additional room for unification. Theoretically, a reasoning system could be
connected to the model at this point, generating additional benefits. It is only
now, from the generic model, that the actual ALCCTL model is exported.

I have decided to create three main Java packages to pool the different
aspects of the implementation. The package ALCCTL will contain the formula
representation and the model. It has a subpackage ALCCTL.Parser that

XML Stylesheet Language
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holds the formula parser components. The second main package, ELearning,
contains the entire model extraction chain, from the XML parser over the
XSLT processing to the generic semantical model. The last package contains
tools and utilities, as well as debugging capabilities. It is aptly named Utils.

4.3.1 Formula

The interface GeneralFormula is a very generic formula — it provides
methods for model checking against a GeneralModel (see chapter 6.2.1), but
nothing else. It can be used to represent any formula, including CTL formu-
las. The base class for an ALCCTL formula is the abstract class Formula. It
implements GeneralFormula, and introduces several methods that are useful
for ALCCTL formulas. The parse method parses a string representation
of a formula and returns the corresponding GeneralFormula object. The
toALCCTL, toCTL and toLaTeX methods return a string representing the
ALCCTL version of the formula, the CTL version of the formula, or a
BTEX formatted version of the formula, respectively. They are abstract in
Formula, and are implemented by its non-abstract descendants. The
translate method is also abstract. It returns a version of the formula
where all temporal operators have been reduced to three base operators
(see chapter 6.1.1). The class Formula is extended, among others, by
FormulaTrue, FormulaFalse, FormulaAnd, FormulaAF, FormulaAG,
FormulaEU and FormulaSubset.

For an overview of the formula implementation, see figure
4.3. Figure 4.4 shows an example formula tree of the formula
AG (defTopic C EF exaTopic).

The classes FormulaSubset and FormulaEquals both make use of the
abstract class Concept, which represents a basic state concept. It too
has the toALCCTL, toCTL and toLaTeX methods, but since it is indige-
nous to ALCCTL and is not a complete formula, it does not implement the
GeneralFormula interface. Since the signature of the toCTL and translate
methods differ between formula and concept and since there are only two
public methods remaining that are shared between formula and concept,
there is no common interface for them.

4.3.2 Model

The interface GeneralModel represents a basic state-based model. Even
though it includes an interpretation domain, it could still be used for
e.g. CTL. It provides accessor methods for the states and for Af, and
has a method that allows for the automatic detection of starting states.
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defTopic EF

exaTopic

Figure 4.4: Example of a Formula Tree.

The implementing class Model adds methods for collecting a counter ex-
ample (see chapter 6.4). For the states of the model there is an inter-
face called GeneralModelState, which includes methods for annotating the
state with interpretations, predicates and roles. It also provides accessor
methods for the state’s name. The actual ALCCTL implementation of
GeneralModelState, ModelState, adds to that several methods needed for
the counter example (again, see below), as well as several methods needed for
the algorithmic model checking. The interface for roles, GeneralModelRole,
is implemented by ModelRole, and contains methods to add, remove and
find pairings of objects.

For an overview of the model implementation, see figure 4.5.

4.3.3 Model Extraction

The model extraction is handled by the ELearning package. The
first class that is needed is an implementation of the abstract class
DocumentAdapter. It provides the general functionality for reading a web
document from an XML file, transforming that file via XSL stylesheets,
and extracting a Content object (the generic semantical model) from it.
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However, the DocumentAdapter is only the front-end for its subclasses
LmmlDocumentAdapter and M13DocumentAdapter. Those classes contain
the knowledge about which stylesheets to use, and they perform the ac-
tual extraction process. Thus it is possible to create other subclasses of
DocumentAdapter that can import some other kind of document, without
having to alter a single line of code anywhere else.

The abstract class ContentAdapter extracts a GeneralModel from the
Content object returned by the DocumentAdapter. The actual ALCCTL
model is extracted by its subclass ALCCTLContentAdapter. It would also be
possible to return a different kind of model, e.g. a CTL model, by creating
another subclass of ContentAdapter.

It would also be possible to make more use of the semantic model (class
Content), for example by connecting it to a reasoner (refer to appendix A.8
for details).

For an overview of the model extraction implementation, see figure 4.6.

4.3.4 Miscellaneous

The class InputOutput in the ALCCTL package provides methods for reading
and writing formulas and models. It can parse a Formula from a string (using
the classes of the ALCCTL.Parser subpackage), read a list of formulas from
a file, write a formula to a string (using the Formula.toALCCTL() method),
or write one or more formulas to a file. It can read a GeneralModel from an
XML file and save it to an XML file (note that this is an ALCCTL model
XML file; this has nothing to do with the model extraction described above).
It can create an SVG? view of a model, and another SVG view of the model
with the steps of the algorithmic approach annotated.

For an overview of the InputOutput class, see figure 4.7.

The class Utils in the package of the same denominator provides several
auxiliary methods, including two (startTiming and stopTiming) that can
be used for time measuring.

Last but not least, the class Debug allows for multi-level debugging. All
debug commands throughout the code are called with a debug level, and
are only executed if this level is within the level that is currently specified.
Since the standard level is LV_NONE, no debug messages will appear in the
output of a program, unless the level is changed. The different levels allow
the debugging (or checking) of different aspects, without having to comment
out all the other messages.

2Scalable Vector Graphics, an XML based vector graphics format
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InputOutput

+readFromFile (filename: String): List<Formula>
Read ALCCTL formulas from a file.
+readFromString (text: String): Formula

Read an ALCCTL formula from a string.

+writeToFile (formula: Formula,

filename:

String): void

Write an ALCCTL formula to a file.
+writeToFile (formulas:

List<Formula>,

filename: String): void

Write ALCCTL formulas to a file.
twriteToString (formula:

Formula) :

String

Write an ALCCTL formula to a string.
+loadFromFile (filename: String):

GeneralModel

Load a Model from a file.
+saveToFile (model: GeneralModel,

filename: String): void

Save a Model to a file.
+saveToCTLFile (model:

GeneralModel,

filename: String): void

Save a CTL translation of a model to a file.

+saveToCTLFile (ctlmodel: String,

formulas: List<Formula>,

model: GenerallModel,

filename:

String): void

Save a CTL translation of some formulas to a file.

+runCTLModelChecking (command:

String,

CTLFile: String): String

Starts an external model checking tool for CTL (such as NuSMV) and runs it on the CTLFile.

+saveToSVG (title: String, model:

GeneralModel, filename: String): void

Save a Model to an SVG vector graphics file.

+saveToSVG (title: String, model:

GeneralModel, filename: String,

modelCheckingData: boolean) :

void

Save a Model to an SVG vector graphics file.

+saveToSVG (title: String, model:

GeneralModel,

filename: String,

marked: List<String>):

void

Save a Model to an SVG vector graphics file.

+saveToSVG (title: String, model:

GeneralModel, filename: String,

modelCheckingData: boolean,

marked: List<String>): void

Save a Model to an SVG vector graphics file.

+saveToSVG (title: String, model:

GeneralModel,

filename: String,

modelCheckingData: boolean,

marked: List<String>,

scalingInformation: boolean,

initialSets: boolean): void

Save a Model to an SVG vector graphics file.

Figure 4.7: Overview

of the class InputOutput.
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4.4 Implementation

4.4.1 Formula

The formula parser was generated with JLex® and CUP* from a .lex
and a .cup file. The functionality can be accessed via the InputOutput
readFromString or the Formula parse methods without having to call the
parser directly.

Figure 4.8 shows a sequence diagram of the formula parsing process.

4.4.2 Model

In the Model, the list of states is implemented as a
List<GeneralModelState>, namely an ArrayList. This optimises
the most common use of the states: Iteration over all of them. The same
is true for the interpretation domain A’. In each ModelState, the list of
successors is defined as a List<GeneralModelState>, and again and for
the same reason is instantiated as an ArrayList. This is especially efficient
for the algorithmic approach (see chapter 6).

The DTD of the model XML format can be seen in table A.1 in appendix
A.7. Figures 4.9 and 4.10 show examples of the SVG view of a model.

4.4.3 Model Extraction

The model extraction process makes heavy use of the Java XML API, JAXP?.
It is used for both XML parsing and XSL transformation. Even though there
may be “better”, or more convenient XML interfaces like e.g. the Apache®
project Xerces”, JAXP has the distinct advantage that it does not require
any additonal packages to be installed — a simple Run-Time installation of
Java will be sufficient.

During the implementation of the model extraction, I encountered a num-
ber of small problems. One of them was that all WWR Lmml XML files link
to a Document Type Definition (DTD) with an absolute path that points to
a directory on the current hard drive. I decided against disabling the DTD
check, because a syntactical check before a complicated extraction process

3Lexical Analyzer Generator for Java,
http://www.cs.princeton.edu/ appel/modern/java/JLex/
“LALR Parser Generator in Java, Version 11, http://www2.cs.tum.edu/projects/cup/
5Java API for XML Processing
6 Apache Software Foundation, http://www.apache.org
"http://xerces.apache.org/
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CallerObject Formula InputOutput Parser
{} parse (String)

readFromString (String)

parser.parse (String)

Formula

1
'
1
1
1
1
'
1
1
1
1
'
'
: s
GeneralFormula
<
1
1
1

Figure 4.8: Sequence diagram of the formula parsing process.
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Figure 4.9: SVG View of the Test Module (without Scaling Information and
State Initialisations).
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Figure 4.10: SVG View of the Fuzzy Module (without State Initialisations).
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obviously seems like a good idea. So any user who wants to import Lmml
files on his or her system will need to have the files required by Lmml in the
appropriate local directory.
Another problem was that the XSL stylesheet that resolves the Lmml
include commands needs to know the base path of the XML files. To resolve
this, every time this stylesheet is called, an XSL file that contains a single
variable holding the path information is dynamically created and imported
by the include stylesheet.
Last but not least, since the structures of Lmml and <M L3> are very differ-
ent, I needed to create a completely new set of stylesheets for each language,
as well as two quite dissimilar DocumentAdapter implementations.

Let’s regard an example of how model extraction works. Here is a frag-
ment of an Lmml document:

<section title="Grundlegende Erkl&rungen"
label="L1_grundlegende_erklaerungen">
<style type="presentationUnit"/>
<keyStatement>...</keyStatement>
<definition terms="Fuzzy-Logik, Erweiterung der zweiwertigen Logik"
title="Fuzzy-Logik">
<text>
<defined>Fuzzy-Logik</defined>
erweitert die <iref terms="klassische Logik'">klassische
zweiwertige</iref> Logik ...
</text>
</definition>

<description>
<text>
Bei den beiden
<ref href="#L1_zwei_beispiele">vorangegangenen Beispielen</ref>
handelt es sich um <iref>Fuzzy-System\e</iref>.
</text>
</description>
</section>

First, this document is run through several stylesheets. The first one
(LmmlIncludes) resolves all include directives. The second (LmmlPUs)
marks all presentations units and tags each element with a unique id, based
on its title and position in the document. The third stylesheet (LmmlAbbre-
viations) resolves abbreviated syntax and inherited variant information (like
intensity or target group). Large parts of that stylesheet have been copied
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from the Lmml WWRPUB environment. The next stylesheet (LmmlScal-
ing) converts the variant information to simple Boolean attributes like “in-
tensity_basic=yes”. It can also convert indirect references (such as irefs) to
direct ones, but this feature is currently deactivated because it would increase
the complexity of the model dramatically, while having no real meaning for
the structure. Irefs are used to see where a definition or concept is used, but
they are not meant to provide an additional narrative path.

The last stylesheet (LmmlSuccessors) attempts to find all successor states
for each state. The main problem is that it has to find a successor for each
possible variant instead of just accepting the next state that fits. It also has
to take extensions into account, and resolve references, since those point to
a successor state as well:

<xsl:if test="@form_script=’yes’">
<xsl:if test="Qgroup_student=’yes’">
<xsl:if test="Q@intensity_basic=’yes’">
<xsl:if test="G@medium_screen=’yes’">
<xsl:for-each select="following::section[@style_type=’pu’
and not(@type=’extension’) and @form_script=’yes’ and
O@group_student=’yes’ and Q@intensity_basic=’yes’ and
O@medium_screen=’yes’] [1]">
<xsl:call-template name="succ"/>
</xsl:for-each>
</xsl:if>
<xsl:if test="@medium_paper=’yes’">

<xsl:for-each select="descendant::ref | descendant::related">
<xsl:if test="Q@href'">
<xsl:if test="contains(@href,’#’)">

<xsl:variable name="href" select="substring-after(Qhref,’#’)"/>

<xsl:element name="successor_state">
<xsl:attribute name="idref">

<xsl:value-of select="/descendant: :*[Q@id=$href]/Cpu_id"/>

</xsl:attribute>

Here is the above fragment, after it has been XSL transformed:

<section form_script="yes" form_slide="no" group_student="yes"
group_teacher="yes" intensity_advanced="yes" intensity_basic="yes"
intensity_expert="yes" medium_paper="yes" medium_screen="yes"
id="L1_grundlegende_erklaerungen" style_type="pu"
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title="Grundlegende Erklarungen">
<successor_state idref="L1_aufbau_von_fuzzysystemen" type="successor"/>
<successor_state idref="L1_zwei_beispiele" type="ref"/>
<definition id="1.1.1.4. Fuzzy-Logik"
pu_id="L1_grundlegende_erklaerungen" title="Fuzzy-Logik">
<text>
<defined>Fuzzy-Logik</defined>
erweitert die klassische zweiwertige Logik auf
</text>
</definition>
<description id="N66742" pu_id="L1_grundlegende_erklaerungen">
<text>
Bei den beiden
<ref href="#L1_zwei_beispiele" 1id="N66746">vorangegangenen
Beispielen</ref> handelt es sich um Fuzzy-Systeme.
</text>
</description>
</section>

Now it’s the LmmlDocumentAdapter’s turn. It traverses the resulting
XML tree and extracts states and assertions from it, including scaling in-
formation and things like definitions or examples:

private Content traverseTree(Node tree, Content c) {
if (tree instanceof Element) {
Element e = (Element)tree;
if (e.getTagName().equals("section") && e.getAttribute("style_type")
.equals("pu")) {
String id = e.getAttribute("id");
ContentState cstate = c.getState(id);
if (cstate == null)
cstate = new ContentState(id);
// this adds the scaling information ’hasScaling’ and ’scaleTo’
// to the ABox of c
c = getScaling(e, id, id, c);
NodeList successors = e.getElementsByTagName ("successor_state");
for (int i=0;i<successors.getLength();i++) {
String idref = successors.item(i).getAttribute("idref");
// no duplicate successors
if (!cstate.successors.contains(idref) && 'idref.equals(""))
cstate.successors.add(idref);
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if (cstate.successors.size() == 0) {
cstate.successors.add(id);
cstate.reftypes.put(id, "successor");
+
c.setState(cstate);
} else {

} else if (e.getTagName().equals("algorithm")) {
c = getScaling(e, id, stateid, c);
// add standard assertions like ‘‘Fragment’’ or ‘‘topicOf’’,
// as well as one called ‘‘Algorithm’’ (depend. on the param.)
assertions = updateAssertions(e, id, "Algorithm", assertions);
} else if (e.getTagName().equals("definition")) {
c = getScaling(e, id, stateid, c);
assertions = updateAssertions(e, id, "Definition", assertions);
// find all title strings for an element
String[] titles = getTitle(e);
for (int i=0;i<titles.length;i++)
if (!titles[i].equals("")) {
assertions.add(new ContentABoxAssertion("definedTopic",
titles[il));
assertions.add(new ContentABoxAssertion("definedAt", id,
titles[il));
}
} else if (e.getTagName().equals("demonstration")) {
c = getScaling(e, id, stateid, c);
assertions = updateAssertions(e, id, "Demonstration",
assertions);

This tree traversal returns semantic content in the form of a Content

class. This content is now converted into an ALCCTL model by the
ALCCTLContentAdapter:

List<GeneralModelState> mstates = new ArrayList<GeneralModelState>();
// create state list
for (int j=0;j<c.getStates().size();j++) {

ContentState cstate = c.getStates().get(j);

GeneralModelState mstate = new ModelState(cstate.getName());

// convert assertions to interpretations and roles
List<ContentABoxAssertion> assertions = c.getABox().getAssertions(
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cstate.getName());
for (int i=0;i<assertions.size();i++) {
if (assertions.get(i).isDualValued())
mstate.addRole(assertions.get (i) .getName(), assertions.get(i)
.getValue(), assertions.get(i).getValue2());
else
mstate.addInterpretation(assertions.get (i) .getName(), assertions
.get (i) .getValue());
}
mstates.add(mstate) ;
}
m.setStates(mstates) ;
// set successor states

m.markStartingStates();

// set deltal

List<String> deltal = new ArrayList<String>();

// extract them from the ABox, to make sure to get exactly those that
// are used; no more, no less

String value = assertion.get(i).getValue();

if (!deltal.contains(value))
deltal.add(value);

if (assertion.get(i).isDualValued()) {
value = assertion.get(i).getValue2();
if ('deltal.contains(value))

deltal.add(value);
}

m.setDeltal(deltal);

Finally, the model can be saved as an XML file itself. Here is a fragment
of this file:

<state name="L1_grundlegende_erklaerungen" startingState="no">
<successor name="L1_aufbau_von_fuzzysystemen" type="successor"/>
<successor name="L1_zwei_beispiele" type="ref"/>
<interpretation name="Definition">
<i_item value="1.1.1.4. Fuzzy-Logik"/>
<i_item value="1.1.1.4. N66721"/>
</interpretation>
<interpretation name="Description">
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<i_item value="1.1.1.4. N66742"/>
</interpretation>
<interpretation name="definedTopic">
<i_item value="Fuzzy-Logik"/>

<role name="hasScaling">
<r_item conceptl="1.1.1.4. Fuzzy-Logik" concept2="GroupStudent"/>
<r_item conceptl="1.1.1.4. Fuzzy-Logik" concept2="FormScript"/>
<r_item conceptl="1.1.1.4. Fuzzy-Logik" concept2="IntensityBasic"/>
<r_item conceptl="L1_grundlegende_erkl." concept2="GroupStudent"/>
<r_item conceptl="L1_grundlegende_erkl." concept2="FormScript"/>
<r_item conceptl="L1_grundlegende_erkl." concept2="IntensityBasic"/>

</role>

<role name="topicOf">
<r_item conceptl="Fuzzy-System" concept2="1.1.1.4. N66721"/>

</state>
<deltal>
<d_item value="FormSlide"/>
<d_item value="Fuzzy-Systeme fiir Klassifikation: Iris"/>

Extraction of <M L3> models works analogous, even though other
stylesheets and an adjusted XML tree traversal are required. Figure 4.11
shows a sequence diagram of the model extraction process.
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CallerObject ‘ ’DocumentAdapter ’melDocumentAdapter ’ ContentAdapter ‘ ’ALCCTLContentAdapter

setFilename (String)

getModel ()

getContent ()
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extract (Node)
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Figure 4.11: Sequence diagram of the model extraction process.
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Chapter 5

Approach I: Reduction

The first possible approach is to reduce ALCCTL formulas and models to
CTL, and then use the existing CTL model checking tools.

5.1 Description

The reduction process itself is — thanks to the “translation templates” from
[WF04a] — rather straight forward. The formula tree is traversed from top to
bottom, each operator reduced in turn, and the process continues recursively
for its argument(s).

The first of the following two definitions has been taken almost literally
from [WF04a] (note that since CTL is itself a temporal logic, the temporal
operators need no explicit translation):

Definition 11 (CTL reduction of an ALCCTL Formula) Given is an
ALCCTL formula ¢ and an ALCCTL model M = (S, —, I, A"). The CTL
reduction gar 1s inductively obtained from ¢ as follows:
(v C %)AI =def  Neear (W1 [c] — ba]c]), for concepts i1 and 1,
(mP)ar =dey T (Par)
(D1 N P2)ar =def  P1ar N Paar
where - [c] is for A being an atomic concept and v an ALCCTL state concept

recursively defined as
Ald  =ay Alc)

(1 TVaho) ] =aep W1 lc] A o]
(1 U o))  =aqer rlc] V ol
()] =4y (W)
FRY) [l =aer  Vaear (R(e;d) A ¢ [d])
(VRA) [l =daer  Naear (R(e,d) A 9 ]d])
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Definition 12 (CTL reduction of an ALCCTL Model) Given is
an ALCCTL model M = (S,— I,A). The CTL reduction
M = (S,—,L) is obtained by reducing all formulas for this model

to CTL after definition 11 using A' and by replacing the interpreta-
tion function I with a labelling function L. The latter is defined as
L(s) =4y {A(c) € Alce AI®}YU{R(a,b) € R|(a,b) € R}, where A is
the set of atomic concepts and R is the set of atomic roles [WF04a).

5.2 Specification

5.2.1 Formula

As mentioned above, the method toCTL does the actual CTL reduction of the
formula. The implementation of an ALCCTL formula allows for all temporal
operators, including AB and EB. Those are not supported by most CTL
tools, however, so that the implementation of the toCTL method for the B
operators includes a base reduction similar to that of the translate method,
thus substituting other operators instead that can then be reduced to CTL
without problem.

5.2.2 C(CTL Model Export

The class InputOutput (see chapter 4.3.4) also provides two methods
saveToCTLFile that expect a model or a list of formulas and converts them
to a CTL model. The first version of the method creates the actual CTL
model, while the second version reads the previously created model and adds
the reduced formulas to it, saving the entire model to a new file. This file
can now be used as input for CTL model checking tools. Finally, the method
runCTLModelChecking can start an external CTL model checker. It takes a
CTL file created with saveToCTLFile as a parameter, as well as the path to
the external tool.

5.3 Implementation

The structure of the implementation for the reduction approach can be seen
in figure 5.1.
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public String toCTL(GeneralModel model) {
return "EX("+arg.toCTL(model)+")";
}

Table 5.1: FormulaEX

public String toCTL(GeneralModel model) {
String result = "";
String argliCIL = "";
String arg2CTL = "";
for (int i=0;i<model.getDeltal().size();i++) {
arglCTL = argl.toCTL(model.getDeltalI().get(i), model);
arg2CTL = arg2.toCTL(model.getDeltal().get(i), model);
if (i<model.getDeltaI().size()-1)
result += "("+arglCTL+" -> "+arg2CTL+") & ";
else
result += "("+arglCTL+" -> "+arg2CTL+")";

}

return result;

Table 5.2: FormulaSubset

5.3.1 Formula

The reduction process is done along the lines of definition 11. Each Formula
subclass implements its own toCTL(GeneralModel) method that does the
local conversion and makes the recursive call(s). Each Concept subclass sim-
ilarly implements a toCTL(String, GeneralModel) method. The String
is the element of A! that is currently evaluated (corresponding to the - [c]
syntax of definition 11).

See tables 5.1 through 5.5 for implementation examples.

5.3.2 Model

Reducing an ALCCTL model to a CTL model that can be read by CTL model
checking tools, namely NuSMV | is done in three stages. First, all required
variables are declared. Second, all those variables are initialised. Third, for
each state transition the new values for all variables are listed.

Formally, a NuSMYV file looks like this. A module declaration
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protected String toCTL(String element, GeneralModel model) {
String result = "E[";
result += argl.toCTL(element, model);
result += " U ";
result += arg2.toCTL(element, model);
return result+"]";

Table 5.3: ConceptEU

protected String toCTL(String element, GeneralModel model) {

String result = "";
String argCTL = arg.toCTL(element, model);
if (model.getDeltaI().size() > 0)

result += "("+name+" ("+element+", "+model.getDeltaI().get(0)

+ ") & "+argCTL+")";

for (int i=1;i<model.getDeltal().size();i++) {

result += " | ("+name+"("+element+", "+model.getDeltal().get(i)

+ u) & "+argCTL+")";

}

return result;

Table 5.4: ConceptExists

protected String toCTL(String element, GeneralModel model) {
return Utils.formatCTL(element+"_is_"+name) ;

3

Table 5.5: ConceptAtomic
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MODULE main
is followed by the declaration of variables.

VAR

DFA_is_Definition: boolean;
DFA_is_Example: boolean;
DFA_is_Task: boolean;
DFA_is_Fragment: boolean;

state : {Intro, Def, Exa, Conc};

These declarations are succeeded by a list of initial assignments:

ASSIGN
init(state) := Intro;
init (DFA_is_Definition) := O;

init (DFA_is_Example) := 0;

After that comes the value transition list.

next(state) := case
state = Intro : {Def};
state = Def : {Exa, Conc};
state = Exa : {Conc};
state = Conc : {Conc};

esac;

next (DFA_is_Definition) := case
next(state) = Def : 1;
1: 0;

esac;

next (DFA_is_Task) := case
1: 0;

esac;

Finally, the file is concluded with a list of formulas.
SPEC (DFA_is_definedTopic -> EF(DFA_is_exemplifiedTopic)) & ...

Note that this file is still valid for SMV, not only NuSMV.

To actually create such a file from a GeneralModel, it is necessary to
repeatedly iterate over all states to find all interpretations, roles and predi-
cates, and again to find their respective values when converting them to single
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w.write("VAR\n");
for (int i=0;i<model.getStates().size();i++) {
keys = model.getStates().get(i).getInterpretations() .keySet().iterator();
while (keys.hasNext()) {
String key = keys.next();
for (int j=0;j<model.getDeltal().size();j++) {
String tmp = Utils.formatCTL(model.getDeltal().get(j)+"_is_"+key);
if ('interpretations.contains(tmp))
interpretations.add(tmp) ;

}
}
}
for (int i=0;i<interpretations.size();i++)
w.write(interpretations.get(i)+" : boolean;\n");

Table 5.6: Extract of the CTL export method saveToCTLFile.

Boolean expressions. Table 5.6 shows an extract of the code. Since names
(for states, concepts, roles etc.) in GeneralModel can contain virtually any
character, while NuSMV limits the range to letters, numbers and the under-
score character, the conversion method Utils.formatCTL is needed to trim
an ALCCTL name into CTL shape. Particularly umlauts have proven to be
hard to filter out. Since this conversion is done a lot, it slows the entire extrac-
tion process down. A possible optimisation would be to create a copy of the
GeneralModel and convert all names there — that way, each conversion would
only have to be done once, and not every time the variable is used.

In table 5.7 an extract of the runCTLModelChecking method that runs the
external model checking tool can be seen.

Figure 5.2 shows a sequence diagram of the CTL reduction process.

A major problem for the CTL reduction are roles, inherited from the de-
scription logics ALC. Roles are completely unknown in CTL, with the result
that they have to be expanded to their maximum possible size: A! x Al
Each role has to be split into |Af| - |A’] Boolean variables of the form
rolename_concept,_is_concepty, e.g. topicO f_Definition_is_DF A. This in-
flates the CTL model size notably, not to mention extraction time or pro-
cessing time! To shorten the extraction/reduction time, I have separated the
two reduction processes: The model reduction has to be done only once, and
the CTL model is written to a file. When reducing formulas, this model is
simply copied before the formula declarations, to create a processable CTL
model. Since the model reduction is by far the more time consuming task
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public static String runCTLModelChecking(String command,
String CTLFile) {
Runtime run = Runtime.getRuntime();
ShutdownThread hook = new ShutdownThread();
Process mc = run.exec(command + " " + CTLFile);

// create a shutdownhook that will terminate
// the external application

// if the java program is terminated.
hook.process = mc;
run.addShutdownHook (hook) ;

// read the output of the external application
BufferedReader output = new BufferedReader(

new InputStreamReader (mc.getInputStream()));
String result = ""; String line = output.readLine();
while (line != null) {

result += line + "\n"; line = output.readLine();
+
output = new BufferedReader(

new InputStreamReader (mc.getErrorStream()));

// remove the shutdownhook when the
// external application has finished.
run.removeShutdownHook (hook) ;

return result;

3

Table 5.7: Extract of method runCTLModelChecking that runs the external
CTL tool.
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of the two, this cuts down the total run time considerably. Unfortunately,
at the same time, it disallows the use of an optimisation that was previ-
ously possible. If no roles are used in the formulas, they could be omitted
in the CTL model reduction entirely. Tests have shown that this shortens
the time requirements decidedly. However, in the current implementation,
the formulas are not known at the time of the model reduction. In theory,
it would have even been possible to refine that optimisation, by generally
including only those roles that are required (possibly none). This concept
could also have been extended to the interpretation of concepts: Concepts
not mentioned in a formula could be omitted as well. However, the trade-off
is worthwhile.

Pending the outcome of the analysis of the reduction approach, I have not yet
tried to combine both refinements (the separation and the role/interpretation
screening). I have, though, included an optional parameter for the model re-
duction that indicates whether roles should be included in the CTL model or
not (the default being “yes”, of course).

One theoretical optimisation is to include only those elements of A! in
the role reduction that are actually part of the role relation (e.g. “Sec-
tion_1_Introduction” would probably never be in the “scaleTo” relation).
That is made quite difficult by the role semantics, however. Recall the se-
mantics of the V quantor from chapter 2.4, definition 9: (VR.1))!(®) =def
{a € AT|Vb.(a,b) € R — be !} It includes the entirety of A’, not
just the elements of the role relation. But more important is definition 11
from chapter 5.1: (VR4))[c] =g Agear (R(c,d) A ¢ [d]). Since c can
be any element of A’, and d iterates over A, the current semantics clearly
suggest a scaling of A! x AZ. Nonetheless, it would be possible to reduce
the second A’ (d) to the scope of the role. Given the dismal performance of
CTL role reduction (see below), this would most likely be a just a drop in a
bucket.

Another problem concerning the CTL reduction is that CTL models, as
recognised by most tools, can only have a single starting state. Since that
constraint is not necessarily valid for ALCCTL models (see chapter 6.3.2),
it may occur that not the entire model is checked. A possible solution is
to extract multiple CTL models from a single ALCCTL model, each with a
distinct starting state. Again, I will await the outcome of the analysis before
implementing this solution.
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5.4 Complexity

Let M = (S,—,I,A) be an ALCCTL model, C the set of atomic concepts
and R the set of atomic roles. Exporting M to a CTL model M’ is done in sev-
eral steps. The first is to create lists of interpretations of concepts and roles
and to declare them as variables, with complexity classes O (|S] - |C]? - |A])
and O (|S] - |R|* - |AT[?), respectively.

// listing concepts:
// iterate over all states: |[S]|
for (int i=0;i<model.getStates().size();i++) {
keys = model.getStates().get(i).getInterpretations().keySet()
.iterator();
// iterate over (possibly) all concepts: |[C|
while (keys.hasNext()) {
String key = keys.next();
// iterate over Deltal: |DeltaIl
for (int j=0;j<model.getDeltal().size();j++) {
String tmp = Utils.formatCTL(model.getDeltal().get(j)+"_is_"+key);
// filter duplicates
// Arraylist takes linear time for ’contains’: |[C|
if (!interpretations.contains(tmp))
interpretations.add(tmp) ;

// listing roles:
// iterate over all states: |[S|
for (int i=0;i<model.getStates().size();i++) {
keys = model.getStates().get(i).getRoles() .keySet().iterator();
// iterate over (possibly) all roles: |R|
while (keys.hasNext()) {
String key = keys.next();
// iterate over Deltal: |Deltall
for (int j=0;j<model.getDeltal().size();j++)
// iterate over Deltal: |Deltall
for (int k=0;k<model.getDeltal().size();k++) {
String tmp = Utils.formatCTL(key)+"_"
+ Utils.formatCTL (model.getDeltalI().get(j))+"_is_"
+ Utils.formatCTL (model.getDeltal().get(k));
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// filter duplicates
// Arraylist takes linear time for ’contains’: |R|
if (!roles.contains(tmp))

roles.add(tmp) ;

b
The next step is to declare all states as variables. This is in O (|S]).

// declare states as variables:

w.write("state : {");

// iterate of all states: |[S|

for (int i=0;i<model.getStates().size();i++) {
w.write(Utils.formatCTL (model.getStates() .get (i) .getName()));
if (i<model.getStates().size()-1)

w.write(", ");
+

w.write("};\n");

Then comes the initialisation phase, which is in O (|C|? - |A’|) for the
concepts, and in O (|R|? - |AT]?) for the roles.

// initialisation phase (concepts):
// iterate over (possibly) all concepts: |[C|
for (int i=0;i<interpretations.size();i++) {
w.write("init("+interpretations.get(i)+") := ");
boolean init = false;
keys = model.getStates().get(startingState).getInterpretations()
.keySet () .iterator();
// iterate over (possibly) all concepts: |C|
while (keys.hasNext()) {
String key = keys.next();
interpretation = model.getStates().get(startingState).interpret(key);
// iterate over interpretations (can be Deltal): |[DeltalIl
for (int j=0;j<interpretation.size();j++) {
String tmp = Utils.formatCTL(interpretation.get(j)+"_is_"+key);
// ArraylList access is in constant time
if (interpretations.get(i).equals(tmp))
init = true;
if (init) break;
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if (init) break;
+
if (init) w.write("1"); else w.write("O");
w.write(";\n");

}

// initialisation phase (roles):
// iterate over (possibly) all roles: |R|
for (int i=0;i<roles.size();i++) {
w.write("init("+roles.get(i)+") := ");
boolean init = false;
keys = model.getStates().get(startingState).getRoles()
.keySet () .iterator();
// iterate over (possibly) all roles: |R|
while (keys.hasNext()) {
String key = keys.next();
role = model.getStates().get(startingState) .getRoles().get(key);
Iterator<String> rkeys = role.getConcepts();
// iterate over left-hand-side of role (can be Deltal): |DeltaIl
while (rkeys.hasNext()) {
String rkey = rkeys.next();
Iterator<String> elements = role.get(rkey).iterator();
// iterate over right-hand-side of role (can be Deltal): |Deltall
while (elements.hasNext()) {
String tmp = Utils.formatCTL(key)+"_"+Utils.formatCTL (rkey)
+ "_is_"+Utils.formatCTL(elements.next());
// ArraylList access is in constant time
if (roles.get(i).equals(tmp))
init = true;

The last step is the assignment of new values on each state transition.
The complexity is in O (|S]?) for the states themselves (the actual state
transitions), and O (|S|-|C|*-|A!|) and O (|S|-|R[*-|A[?) for concepts
and roles, respectively.

// state transitions:

w.write("next(state) := case\n");

// iterate over all states: |S|

for (int i=0;i<model.getStates().size();i++) {
w.write("\tstate = "
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+ Utils.formatCTL (model.getStates() .get(i).getName())+" : {");
// iterate over (possibly) all states: |S]|
for (int j=0;j<model.getStates().get(i).getSuccessors().size();j++) {
w.write(Utils.formatCTL (model.getStates().get (i) .getSuccessors()
.get(j) .getName()));
if (j<model.getStates().get(i).getSuccessors().size()-1)
w.write(", ");
}
w.write("};\n");
}

w.write("esac;\n");

// changing values for concepts:
// iterate over (possibly) all concepts: |C|
for (int i=0;i<interpretations.size();i++) {
w.write("next("+interpretations.get(i)+") := case\n");
// iterate over all states: |S]|
for (int k=0;k<model.getStates().size() ;k++) {
keys = model.getStates().get(k).getInterpretations()
.keySet () .iterator();
// iterate over (possibly) all concepts: |[C|
while (keys.hasNext()) {
String key = keys.next();
interpretation = model.getStates().get(k).interpret (key);
// iterate over (possibly) entire Deltal: |Deltall
for (int j=0;j<interpretation.size();j++) {
String tmp = Utils.formatCTL(interpretation.get(j)+"_is_"+key);
// ArraylList access is in constant time
if (interpretations.get(i).equals(tmp))
w.write("\tnext(state) = "
+ Utils.formatCTL (model.getStates() .get (k) .getName())
EIEIEFACOF
Fr}
w.write("\t1l: 0;\n");
w.write("esac;\n");

b

// changing values for roles:

// iterate over (possibly) all roles: |R|

for (int i=0;i<roles.size();i++) {
w.write("next("+roles.get(i)+") := case\n");
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// iterate over all states: [S]|
for (int k=0;k<model.getStates().size() ;k++) {
keys = model.getStates().get (k) .getRoles() .keySet().iterator();
// iterate over (possibly) all roles: |[R|
while (keys.hasNext()) {
String key = keys.next();
role = model.getStates() .get (k) .getRoles() .get (key);
Iterator<String> rkeys = role.getConcepts();
// iterate over left-hand-side of role (can be Deltal): |Deltall
while (rkeys.hasNext()) {
String rkey = rkeys.next();
Iterator<String> elements = role.get(rkey).iterator();

// iterate over right-hand-side of role (can be Deltal): |Deltall

while (elements.hasNext()) {
String tmp = Utils.formatCTL(key)+"_"+Utils.formatCTL(rkey)
+ "_is_"+Utils.formatCTL(elements.next());
// ArraylList access is in constant time
if (roles.get(i).equals(tmp))
w.write("\tnext(state) = "
+ Utils.formatCTL (model.getStates() .get (k) .getName())
+ " 1\n");
Prr;
w.write("\t1: 0;\n");
w.write("esac;\n");

3

This adds up to a complexity class of |S|- |C]?-|AL| +|S| - |R|? - |AT]? +
S|+ [CP - [AT 4 [R]?- JAT2 4 [S[2+[S] - |C? - [AT] + S| | RI? - [AT[2. By the

reduction rules of O, this can be reduced to the following complexity class:

Proposition 1 (Complexity of the CTL Model Export Algorithm)
Ezporting a CTL model M’ from M (denoted as M > M') has the following
complezity: M > M' € O (max (|S|-|C]*-|AL], |S] - |R[*- |AT]?)).

As there are usually only small numbers of atomic concepts and roles,

the deciding factors are |S| and — even more importantly — |A!|. Thus, the
complezity can be further reduced to M > M’ € O (|S] - |R|*- |AT[?).

In the current implementation, however, another very expensive factor is
the formatCTL method: It scales linearly to the length of the input string,
but with a high constant factor! Since the input string is arbitrary in length
(only confined by the available memory), this factor is not even present in
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the above complexity class.

The complexity is a worst-case estimate: The actual values can be smaller.
As long as roles are included, they cannot be much smaller, though. Only
the number of roles in each state can be less than |R|. |A!|*> remains un-
changed (see chapter 5.3.2, the section about roles, for more details). If
roles are excluded, however, the complexity shrinks to a more manageable
O (|S|-|C|? - |A™]). Due to the relatively small size of C' and the reduction
from |A!|? to |Al], the advantage is considerable.

Proposition 2 (Complexity of the CTL Formula Reduction)
Reducing an ALCCTL formula ¢ to CTL is in O (|A7]-|¢]), as can be
easily seen from the reduction definition of ¥V (see definition 11 and below),
which has the most complex reduction algorithm. |¢| denotes the number of
subformulas of ¢: The number of “components” of the formula.

String argCTL = arg.toCTL(element, model);
if (model.getDeltal().size() > 0)
result += "("+Utils.formatCTL(name)+"_"+Utils.formatCTL(element)
+ "_is_"+Utils.formatCTL(model.getDeltaI().get(0))+" -> "+argCTL+")";
for (int i=1;i<model.getDeltal().size();i++) {
result += " & ("+Utils.formatCTL(name)+"_"+Utils.formatCTL(element)
+ "_is_"+Utils.formatCTL (model.getDeltal().get(i))+" -> "+argCTL+")";
}

Proposition 3 (Complexity of the CTL Model Checking) Model
checking CTL is P-complete with an wupper bound of O(|S| - |¢|)
[Sch02],  so the complete model checking process wusing the reduc-
tion approach has the following complexity: M,s EcrrReduction ¢ €
O (1SI- IR - 1A + A1) Jo| +15] - 16l) = O(S|-IRE-IAIR) for a
formula ¢ (the complexity of checking ¢ against M in state s). However,
the upper bound for model checking CTL does not consider the number of
variables, which is in this case among the deciding factors.

5.5 Tests

To test the implementation and the performance of the reduction approach,
I will use five different models and up to 29 different formulas. Table 5.9
holds an overview over the formulas. The models are the following:

e TinyTest — This is the model introduced as an example in chapter 2.2.

e Test — This is a small (yet not tiny) test model, shown in figure 4.9.
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e EZKom — This is a real E-Learning module: The WWR EZKom mod-

ule, extracted from Lmml.

e Fuzzy — This is another real module: The WWR Fuzzy module, ex-
tracted from Lmml. See figure 4.10.

e BIS — This also is an E-Learning module: The WWR, BIS module,
extracted from <M L3>.

A statistical overview of each model is shown in table 5.8.
All tests have been run on a computer with the following configuration:
Processor | Intel® Pentium™ 4, 2.4 Ghz, Hyperthreading
RAM (physical) | 1 GB
Disk Capacity | 60 GB Raid 1
Operating System | Microsoft® Windows® XP, SP2
Java | Version 1.5.0
JLex | Version 1.2.6
CUP | Version 11a
NuSMV | Version 2.3.1
A representative subset of the tests has been repeated on a computer in
the graduates’ room! to prove reproducibility. All values shown here are from
the initial tests with the above configuration.
The following tests have been performed:

1. All five models have been extracted from Lmml or <M L3> and saved
as an XML file.

2. Then a CTL model has been exported from each of them, once without
roles, once including roles.

3. Now every model was checked against up to 27 formulas with NuSMV,
creating a formula/model CTL file for each formula in the process.

Time measurement has been done with the methods startTiming
and stopTiming from the package Utils. Both use the Java method
System.currentTimeMillis. Memory usage has been measured using the
Windows® Task-Manager. The statistics in table 5.8 were created with the
command-line tool ALCCTLStatistics, while all tests were done using the
command-line tool ALCCTLModelChecking.

The model extraction times (for Lmml or <M L3>, respectively) are
listed in table 5.10. The time it takes to export each model to CTL as well

1Prof. Dr. B. Freitag, Chair for Information Management, Faculty for Mathematics
and Informatics, University of Passau
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| TinyTest | Test | EZKom |  Fuzzy | BIS
Size of AT 15 35 983 1183 69
Number of states 4 12 161 255 39
Total number of successors 5 15 203 385 70
Mean number of succ./state 1.25 1.25 1.26 1.51 1.79
Total number of interpret. 6 18 526 683 26
Mean number of int./state 1.5 1.5 3.27 2.68 0.7
Total number of roles 14 38 612 920 96
Mean number of roles/state 3.5 3.17 3.8 3.6 2.46
Memory usage 485kb | 774kb | 10.289mb | 13.925mb | 1.144mb

Table 5.8: Model Complexity.

as the resulting file size can be seen in table 5.11. The time it takes the CTL
model checking tool (NuSMV) to run the model is listed in table 5.13, while
the memory usage during the processing is shown in table 5.12. Table 5.14
shows the actual results of the run, that is, whether or not the formula is
true.

A graph that shows how the reduction approach scales with respect to the
size of the model is shown in figure 7.4, chapter 7. It compares the scaling
of the two model checking approaches.

Trying to export a CTL model including roles for both the EZKom and
the Fuzzy module failed with an OutOfMemoryError: The Java heap space
was insufficient. Considering that both models did not produce results for
any simple formula, testing them with the complicated formulas 26 and 27
(both include roles) seemed like a waste of time. Therefore, I have made no
effort to procure a CTL model with roles for EZKom and Fuzzy, neither by
trying to further optimise the model export process, nor by simply increasing
the Java heap space.

Model checking of formula 16 against the Test model was aborted after more
than 12 hours — as were several other tests (see table 5.14). The EZKom
model completely withstood any attempts at model checking — even formula 8
(true) did not terminate within a day! Tests on the Fuzzy module terminated
rather quickly, but did not produce any result, not even an error. Since the
Fuzzy model is by far the largest, it stands to reason that it exceeds some
internal limit of NuSMV, especially considering the aborted test of EZKom.
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Number

‘ Formula

71

Formula 1

1L CT

Formula 2

EG(LCT)

Formula 3

EX(LCT)

Formula 4

E [trueU LC T]

Formula 5

1 CEGL

Formula 6

1 CEXT

Formula 7

ICE[TUT]

Formula 8

true

Formula 9

—true

Formula 10

true N true

Formula 11

true N false

Formula 12

true V false

Formula 13

false V false

Formula 14

T =T

Formula 15

T =1

Formula 16

definedTopic T EF exemplifiedTopic T T

Formula 17

definedTopic T EF exemplifiedTopic L =T

Formula 18

de finedTopic T EX exemplifiedT opic

Formula 19

definedTopic © EF exemplifiedT opic

Formula 20

de finedT opic C E [definedT opic U exempli fiedT opic]

Formula 21

de finedTopic C AG exempli fiedT opic

Formula 22

AG(definedTopic & EX exemplifiedT opic)

Formula 23

definedT opic C EF exemplifiedT opic)

Formula 24

de finedT opic C E [definedT opic U exempli fiedT opic])

Formula 25

Formula 26

de finedT opic T EF3topicO f.Example)

Formula 27

TinyTest ‘

AG(
AG(
AG(definedTopic © AG exempli fiedT opic)
AG(
AG(

VtopicO f.De finition = EF3topicO f.Fragment)

Table 5.9: Test Formulas.

Test ‘

EZKom ‘ Fuzzy ‘ BIS

1s 735ms | 1s 87hms | 10s 719ms | 13s 781ms | 4s 422ms

Table 5.10: Model Extraction Test Results.
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H TinyTest ‘ Test ‘ EZKom ‘ Fuzzy ‘ BIS

Time (no roles) 93ms | 469ms | 16m 51s | 26m 41s | 672ms
Time (roles) 4s 266ms | 1m 31s | —(@borted | (aborted) 1 96m 2
File size (no roles) 9.79kb | 40.6kb | 2.79mb | 3.7mb | 48.5kb
File size (roles) 222kb | 1.25mb | —(eberted) | (aborted) 17 RGm]

Table 5.11: CTL Export Test Results.

TinyTest ‘ Test ‘ EZKom ‘ Fuzzy ‘ BIS
8.5mb | 15.4mb | -1 —]9.3mb

Table 5.12: CTL Model Checking Memory Usage (usage measured for formula
1, no roles).

Time (no roles)/Mean number of (successors, interpretations) per state

300

250

200

150

100

50

0 — B : 1

TinyTest Test EZKom Fuzzy BIS

Figure 5.3: CTL Model Export: Relation of time(noroles) to
Z{succ7 interp} 9.
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H TinyTest ‘ Test ‘ EZKom ‘ Fuzzy ‘ BIS
Formula 1 391ms 3s 250ms | —(not attempted) —(no result) 2s 312ms
Formula 2 375ms 3s 313ms | —(not attempted) —(no result) 719ms
Formula 3 375ms 3s 266ms | —(not attempted) —(mo result) 734ms
Formula 4 406ms 3s 359ms | —(not attempted) —(no result) 734ms
Formula 5 297ms 3s 422ms —(aborted) —(no result) 735ms
Formula 6 391ms 3s 37Hms | (ot attempted) —(no result) 719ms
Formula 7 297ms 3s 37Hms | —(not attempted) —(no result) 750ms
Formula 8 391ms 3s 234ms —(aborted) —(no result) 703ms
Formula 9 313ms 3s 469ms | —(not attempted) —(no result) 735ms
Formula 10 391ms 3s 375ms | —(not attempted) —(mo result) 735ms
Formula 11 297ms 3s 484ms | —(wot attempted) —(no result) 750ms
Formula 12 375ms 3s 391ms | —(not attempted) —(no result) 719ms
Formula 13 391ms 3s 485ms | —(not attempted) —(no result) 766ms
Formula 14 391ms 3s 37Hms | —(not attempted) —(no result) 719ms
Formula 15 391ms 3s 500ms | —(not attempted) —(no result) 750ms
Formula 16 500ms —(aborted) | _ (not attempted) ~ (no result) 266ms
Formula 17 500ms | —(not attempted) | _(not attempted) —(no result) 250ms
Formula 18 297ms 3s 485ms | —(not attempted) —(no result) 250ms
Formula 19 547ms —(aborted) | _(not attempted) —(no result) 250ms
Formula 20 469ms —(aborted) | _(not attempted) —(no result) 266ms
Formula 21 344ms 3s 500ms | —(not attempted) —(no result) 265ms
Formula 22 375ms 3s 454ms | (ot attempted) —(no result) 250ms
Formula 23 578ms 7(n0t attempted) 7(n0t attempted) 7(n0 result) 266ms
Formula 24 594ms —(aborted) | _(not attempted) —(no result) 250ms
Formula 25 391ms 4s 62ms | —(not attempted) —(mo result) 265ms
Formula 26 3m 568 _ (aborted) _ (not attempted) _ (not attempted) _ (not attempted)
Formula 27 3Hl 508 _ (aborted) _ (not attempted) _ (not attempted) _ (not attempted)

Table 5.13: CTL Model Checking Test Results.
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H TinyTest | Test ‘ EZKom ‘ Fuzzy ‘ BIS
Formula 1 true true —(not attempted) | _(no result) true
Formula 2 || true true —(not attempted) | _(no result) true
Formula 3 || true true —(not attempted) | _(no result) true
Formula 4 | true true —(not attempted) | _(no result) true
Formula 5 || true true —(aborted) —(no result) true
Formula 6 | true true —(not attempted) | _(no result) true
Formula 7 | true true —(not attempted) | _(no result) true
Formula 8 | true true —(aborted) —(no result) true
Formula 9 false false —(not attempted) | _(no result) false
Formula 10 || true true —(mot attempted) | _(no result) true
Formula 11 || false false —(not attempted) | _(no result) false
Formula 12 || true true —(not attempted) | _(no result) true
Formula 13 || false false —(not attempted) | _(no result) false
Formula 14 || true true —(mot attempted) | _(no result) true
Formula 15 || false false —(not attempted) | _(no result) false
Formula 16 t,r.,ule 7(aborted) 7(1’10t attempted) 7(1)0 result) tr,u/e
Formula 17 || true —(not attempted) | _(not attempted) | _(no result) true
Formula 18 || true true —(not attempted) | _(no result) true
Formula 19 || true —(aborted) —(mot attempted) | _(no result) true
Formula 20 || true —(aborted) —(mot attempted) | _(no result) true
Formula 21 || true true —(mot attempted) | _(no result) true
Formula 22 || true true —(mot attempted) | _(no result) true
Formula 23 t,r.,ule 7(“06 attempted) 7(n0t attempted) 7(1’!0 result) t,r.,u/e
Formula 24 || true —(aborted) —(not attempted) | _(no result) true
Formula 25 || false false —(not attempted) | _(no result) true
Formula 26 fCLZSG _ (aborted) _ (not attempted) _ (not attempted) _ (not attempted)
Formula 27 fCLlSG _ (aborted) _ (not attempted) _ (not attempted) _ (not attempted)

Table 5.14: CTL Model Checking Results.
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Time (no roles)/(Size of Deltal * Total number of States)
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Figure 5.4: CTL Model Export: Relation of time (noroles) to |Af]-]S].
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5.6 Evaluation

From figure 5.3 it is apparent that there is no linear relation between the
complexity of a model, and the time it takes to export it to CTL. This
is hardly surprising: A more exponential relation was to be expected (see
below). This can be clearly seen in table 5.11. Comparing figures 5.3 and
5.4 shows that the number of successors or interpretations has tremendous
impact on the export time: Relating the export time to those numbers clearly
reflects the actual proportions, while relating the time only to the number of
states and the size of A’ distorts the picture.

Figure 5.5 shows impressively how fast CTL model checking a reduced
ALCCTL model can actually be — provided it is possible at all and there are
no roles in the formula!

Regarding the test results for model checking, there are a few oddities
that spring to mind. Many of the times measured are exactly the same, for
example the amount of 391ms appears eight times in table 5.13. I believe
there are several reasons for that: Time measurement with Java always is
somewhat imprecise — the implementation of the timing mechanism might
have something to do with the likeness of the numbers. Then, the operating
system caches memory access: Once something has been read, it takes little
time to read it over and over again — like the CTL model! But most impor-
tantly, it would seem that the major time factor with NuSMYV is reading and
processing the model, while the actual formula has only minor impact. This
is supported by the general similarity of the model checking time within the
same model, and by the differences in performance between models.

The general performance decrease for similar formulas containing the E'F' or
EU operators suggests that those are especially troublesome. This is empha-
sised by the abortive attempts with the Test module on such formulas.

A further noteworthy oddity is the fact that the BIS model as a whole per-
forms better than the — far smaller — Test model. It seems likely that this is
due to the lower number of interpretations per state with the BIS module:
This greatly reduces the amount of work that is to be done on each state
transition.

There is another strange effect concerning the BIS model: All formulas that
consist solely of generics like T, true or false (formulas 1 through 15) per-
form worse than the — more complex — formulas 16 through 24! I can only
assume that this has something to do with the internal optimisation pro-
cess of NuSMV — a process that very probably focuses on the evaluation of
predicates, disregarding constants and such entirely.

One thing, however, seems to be obvious: The sheer complexity of
the models, resulting in a huge number of variables, is a principal prob-
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lem for NuSMV, which scales exponentially to the number of variables
[McM93, CCGRO0].
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Chapter 6

Approach II: Algorithmic

The second possible approach to model checking ALCCTL is to re-implement
the standard CTL model checking algorithm for ALCCTL. The implementa-
tion can re-use most of the components defined in chapter 4.

6.1 Description

Implementing the model checking algorithm defined in definition 10 and de-
scribed in chapter 2.3 for CTL requires a representation of both an ALCCTL
formula and an ALCCTL model. Those, including methods for reading, writ-
ing and extracting them, have already been described. What remains is the
description of the actual algorithm itself, as well as any additional objects or
concepts that might be required for it.

6.1.1 Temporal Base

There are ten possible combinations of temporal quantors for both formulas
and concepts, plus several logical and set operators, as well as basic concepts
and truth values. To implement model checking in the algorithmic approach
for all of them would require an unreasonable amount of time and effort.
However, it is possible to reduce the ten temporal quantors (AB, AF, AG,
AU, AX, EB, EF, EG, EU and EX) to a base of three, and to express the
remaining seven as combinations of these base quantors. There are several
different bases possible; I have decided to use EG, EU and EX, because the
absence of A-quantors allows for a fairly efficient implementation.

Definition 13 (Semantic Equivalence) Two formulas ¢ and ¢ are se-
mantically equivalent (¢ = ), if any state in any model that satisfies one
formula, also satisfies the other [HRO0].

79
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The equivalences are as follows:

Alp1Bds] = —E[~¢1U ¢
AF$ = —EG—¢
AGo = -E[TU~g]

Alp1Ugy] = = (E[=¢2U—¢1 N =¢o] V EG—¢s)
AX) = —~EX—d

E [¢1 B ¢o] E=¢2Up1 N =] V EG—¢y
EF$ = E[TU|

These equivalences are proven in [HRO00], except three: AF¢ = —-EG—¢,
AGp = —E[TU~-¢| and E[p1 Bps| = E[~doU by N —¢s] V EG—gs.
However, the equivalences AF¢ = A[TUG¢|, AGp = -EF-¢ and
E [¢1 B ¢po] = —A[~¢1 U ¢o] are proven, from which follows:

AF¢ = A [true U ¢] @(A[Qh U ¢p2]=-(E[~¢2 U ~¢1 A =¢2] V EG¢2))
AFp = = (E[-pU—true N =¢] V EG-¢) <
AF¢p = —(E[-¢U false N =¢] V EG—¢) <
AF¢p = —(E[-¢U false] V EG-¢) &
AF¢p = —(false Vv EG-¢) <
AF¢ = —EG—¢
[
AGp = —EF-¢ & Ere=ETUs)
AGo = -E[TU~g]
Ul
E [¢1 B ¢2] = —A [_|¢1 U ¢2] o (A1 U g2]=~(E[~d2 U =¢1 A ~d2] V EG=¢2))
Elgr Boy] = = (E[=¢aU-=¢1 A =go] V EG-g) <
Elp1 Byl = El=pUdt N ~o] V EG—¢y
0

The above definitions are given for predicates, the appropriate definitions
and the proof for concepts are analogous.
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6.2 Specification

Since there will be no major new components, but rather added functionality
for old ones, there will be no new packages. The model checking algorithm
will make use of the interfaces GeneralFormula and GeneralModel, both of
which reside in the package ALCCTL.

6.2.1 Formula

The interface GeneralFormula has already been mentioned in chapter 4.3.1.
Model checking in general can mean to check whether M, s |= ¢ for all s € S,
or just for some specific s, usually the starting states (M = (S, —, I, Al)).
The interface GeneralFormula reflects these alternatives. It defines three
methods: One for checking the formula against all states of a supplied
GeneralModel, one for checking one specific state of the model, and one
method for checking all designated starting states of the model.

Figure 6.1 shows an overview of the formula implementation.

In principle, the check method that does the actual model checking could
have been moved to the GeneralModel interface. Why hasn’t it been? The
answer is simple, because model checking is inductively defined over the struc-
ture of the formula, so the algorithm primarily has to traverse the formula
tree, not the model.

The process of model checking works like this: One of a formula’s check
methods is called. This method initialises the model checking, for example
by discarding old counter example information (see below) from a previous
check, and by reducing the entire formula against the base operators. It then
calls its own annotate method, which in turn calls the annotate method
of its parameter(s) before doing anything else. This continues down the
entire formula tree to the leafs (atomic concepts and such). From there, the
annotation returns step by step upwards, annotating each subformula to the
states of the model in each step. The last step annotates the entire formula,
thus those states where it is annotated are those where the formula holds.

6.3 Implementation

The structure of the implementation for the algorithmic approach can be
seen in figure 6.2.
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<<interface>>
GeneralFormula

+check (model: GeneralModel): List<String>
Evaluate the model, using the model-checking algorithm for ALCCTL.
Check, for which states the formula is valid.

+check (model: GeneralModel, state: String): boolean
Evaluate the model, using the model-checking algorithm for ALCCTL.
Check if the formula is true for a specific state.

+checkStartingStates (model: GeneralModel): boolean
Evaluate the model, using the model-checking algorithm for ALCCTL.
Check if the formula is true for all starting states.

A

implements

Formula
{abstract}

+parse (formula: String): GeneralFormula

Parses a string representation of a formula and returns that formula.
abstract +toALCCTL(): String

Returns a String-representation of the formula.
abstract +toCTL (model: GeneralModel): String

Returns a String-representation of the CTL-reduction of the formula.

abstract +tolLaTeX(): String
Returns a LaTeX-formatted String-representation of the formula.
abstract +translate(): Formula

Translate a formula to its basic form (if any).
#annotate (model: GeneralModel): GeneralModel
Evaluate the model, using the model-checking algorithm for ALCCTL.

Figure 6.1: Overview of the Formula Implementation.
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Figure 6.2: Diagram of the algorithmic model checking process.
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6.3.1 Formula

In implementing the formula, there was one decision of principle to make
concerning the temporal operators. It was the decision of implementing the
set {AB, AF, AG, AU, AX, EB, EF, EG, EU, EX} of operators, versus
implementing the set {A, E, B, F, G, U, X} of operators and combining
them to the full list above. I implemented a few operators in both concepts
(namely, AU, EU, and A, E, U) for direct comparison. In the end, the
decision turned towards implementing the operators as doubles (like EU or
EQG) instead of combining them (from e.g. E, U or ) almost by default — the
second approach would have been too inefficient. There are several reasons
for that. For one, using the base reduction described in chapter 6.1.1 there
are in fact far fewer operators to implement: Three for the first approach, but
four for the second. Another reason is that splitting the operators would have
made the base reduction (specifically the transform method) more complex:
There would have had to be a long list of case differentiation to find out
exactly how to reduce a certain operator, because it would always depend on
its argument. But finally, and most importantly, the implementation would
have been far less efficient. For example, splitting FU into E and U will
result in two unnecessary loops that could easily have been avoided. They
are caused by redundancy between E and U — both need to look at future
states to determine their respective result.

It is noteworthy that, owing to the base reduction of the temporal opera-
tors, it was possible to provide the user with the full set of them — especially
the AB and E B operators are otherwise often left out and have to be man-
ually emulated by rephrasing the formula.

One useful optimisation in the model checking process is that the al-
gorithm keeps track of which subformulas where already annotated to the
model, so that duplicate subformulas can be ignored.

Table 6.1 exemplifies the implementations of annotate (the method that
does the actual model checking) for the EG concept.

6.3.2 Model

Usually, a model has a single starting state. This is true not out of necessity,
but more often out of habit. Multiple starting states can make structural
or algorithmic definitions more complex, and most of the time there simply
is no need for more than one starting state. E-Learning modules, however,
can very well have multiple starting states. The WWR Fuzzy module, for in-
stance, has a slide variant that is completely separate from the online variant,
thus resulting in two distinct starting states: One for each variant. Adding an
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private List<String> checkFuture(String c, GeneralModelState s) {
List<String> result = s.interpret(c);
// termination case: if s has already been visited, do not recurse
// further but return the result that was found the last time around
if (s.getMarked())
return Utils.cloneStringlList(s.getFormerResultSet());
// mark as visited
s.setMarked(true);
// save the current result
s.setFormerResultSet (Utils.cloneStringList (result));
// if the current result is not empty, recurse further
// if it is empty, EG (namely, G) is does not hold anyway
if (result.size() > 0)
for (int j=0;j<s.getSuccessors().size();j++)
result.addAll (checkFuture(c, s.getSuccessors().get(j)));
// save the current result again: if we come across this state again,
// we do not have to run the entire recursion again!
// (note that s can be the successor of more than one state)
s.setFormerResultSet (Utils.cloneStringlList(result));
return result;

protected GeneralModel annotate(GeneralModel model) {
model = arg.annotate(model);
String curALCCTL = toALCCTLQ);
if (model.isAnnotated(curALCCTL))
return model;
model .addAnnotation(curALCCTL) ;
String argALCCTL = arg.toALCCTL();
for (int i=0;i<model.getStates().size();i++) {
for (int j=0;j<model.getStates().size();j++)
model.getStates() .get(j) .setMarked(false);
model.getStates() .get (i) .getInterpretations() .put (curALCCTL,
checkFuture (argALCCTL, model.getStates().get(i)));
}
Debug.debug (curALCCTL, Debug.LV_EVAL);
Debug.debug(model, Debug.LV_EVAL);
model.stepCounterExample (curALCCTL) ;
return model;

Table 6.1: ConceptEG.annotate
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artificial starting state that branches off to those two is not a good option:
There could be no meaningful interpretations of concepts, roles or predi-
cates at that state, thus wrecking havoc with the verification of formulas!
On the other hand, allowing more than one starting state, and defining the
model checking problem accordingly, creates no big problems. Every state
now needs to have a flag that indicates whether it is a starting state or not
(rather than holding a reference to a single starting state in the model). The
algorithm itself does not have to be changed, only the method that checks
all starting states needs to take this into account.

As stated in chapter 5.3.2, the list of states is implemented as an
ArrayList. The list of concept interpretations, however, is implemented
as a HashMap<String, List<String>>, where the String is the inter-
preted concept, and the List<String> is the set of objects from Al
Since the lookup operation is the one most often used on the interpreta-
tions, a hashmap is an efficient way to implement it. This argumentation is
also valid for predicates (HashSet<String>) and roles (HashMap<String,
GeneralModelRole>, where the String is the name of the role). ModelRole
itself uses a HashMap as well to represent the relations between concepts.

Figure 6.3 shows a sequence diagram of the ALCCTL model checking
process.

6.4 Counter Example

When actually using the algorithm, a major problem quickly arises: When a
given formula — unexpectedly — turns out not to hold for a given model, it is
rather tricky to find out why! The debugging mechanism already mentioned
in chapter 4.3.4 in combination with log files can be used to trace the prob-
lem, but for long formulas and/or large models that is a long and tedious
task indeed. It would be nice if the system would simply present a counter
example of where the likely crunch is.
Let us regard an example of how something like that might work. Recall the
model from figure 2.5, chapter 2.4. The formula defTopic T AX exaTopic
would not hold against that model, because the AX would require that there
be an example in each successor state of sp.f, not just in one. Which is ex-
actly what the counter example should show! It might actually be a message
like “The formula does not hold because defTopic!*res) = {DFA} and
(AX exaTopic)!res) = (), so {DF A} is not a subset of () in state sp.;”.
Most of the time it is very hard to find a useful counter example. Regard,
for example, the formula de fTopic C refTopic. It will probably never hold,
because it is unlikely that there will be a reference to a definition in the very
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Figure 6.3: Sequence diagram of the ALCCTL model checking process.
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paragraph holding the definition. Thus, a suitable counter example would
be the set of all states, which, of course, could be rather unwieldy. Simply
reducing the counter example to provide a single state would be equally
unhelpful in other cases, however.

Another problem is finding the point of failure in the first place. A formula
can have almost infinite length and complexity, and the actual reason why it
does not hold could be at any part of it. Simply returning all subformulas for
all states where they interpret to () or to false clearly is of no use whatsoever.
Negating the entire formula, that is, checking where the formula does not
hold, is a simple approach to that problem. CTL model checkers do just that
[CCGRO0, McM93|. But with ALCCTL most of the time the relevant point
of failure is where the = or = relation fails: In the current implementation
that is what the counter example checks for, with encouraging results.

But even if the relevant point of failure is found, it is a point in the base
reduced formula which does not necessarily have any resemblance to the
original formula left: Therefore, a user might find himself with a counter
example to a formula he has never seen before! A possible solution would
be to attempt some kind of re-mapping, extending the base reduced formula
back to its original form (or at least as close as possible). Another option is
to forgo the base reduction entirely.

In the current implementation, the model checking process stores each
step of the way, for future use of the class CounterExample. If the
model check fails, the counter example is displayed by calling this class’s
toString() method. Table 6.2 lists parts of that method. It is divided in
three sections. The first section tries to find the point of failure — that is, the
step of the T or = operator. The second step lists all states where this
operation failed. In the final step, all these states are displayed, along with
the local interpretations of the subformulas of the failed operation.

The counter example issue has been addressed by several authors, [Ki96,
CGMZ94] among others. However, they all refer to symbolic model checking
based on ordered binary decision diagrams (OBDDs). In symbolic model
checking, sets of states are symbolised by the OBDD of a Boolean function.

An ordered binary decision diagram can be used as a compact represen-
tation of a Boolean formula. An ordered binary decision tree is a structure
that introduces a new variable on each level of the tree. Each left subtree
assumes that the variable is false, while each right subtree assumes that the
variable is true. The leafs hold the values of the Boolean formula for the
variable assignments of each respective path. An OBDD is an OBDT where
all isomorphic subtrees are merged and duplicate nodes are left out. Logical
operators can be applied directly to an OBDD.

The state transition relation of a model can be represented as a Boolean
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public String toString() {
String result = "";
int stepNumber = -1;
// find the first annotation for SUBSET or EQUALS (globally)

if (stepNumber == -1)

result = "No SUBSET or EQUALS found! No counterexample available.";
else {

List<String> states = new ArrayList<String>();

// add all states where the SUBSET or EQUALS relation is false

if (states.size() == 0)

result = "Everything seems to be in order. No CE found.";
else {

String step = model.getCounterExampleSteps() .get (stepNumber) ;
// find out which operator is relevant
String operator = "EQUALS";
if (step.contains("SUBSET"))

operator = "SUBSET";
result = "The "+operator+" predicate was [false] in ...\n";
for (int i=0;i<states.size();i++) {

// display each state where the releation is false,

// and the relevant sets (interpretations)

b
+
+

return result;

}

Table 6.2: CounterExample.toString() — Extraction of the Counter Exam-
ple.
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function — (vs,, vs, ), Where vy is the complete set of variables with values
as in state s, and thus as an OBDD.
Formulas can now be solved as combinations of such diagrams [Cla03].
NuSMV employs, as does its predecessor SMV, ODBBs for model check-
ing. A counter example with this method can usually be found by negat-
ing the last step, that is, negating the lowest subtree of the complete
OBDD. But even though [BCCZ99] proposes alternate methods of sym-
bolic model checking, such as Stalmarck’s Method or the Davis & Putnam
Procedure, all of these approaches cannot be used to find counter exam-
ples for ALCCTL model checking: The procedure simply is too different
[CCGRO00, CCGR~+02, McM93, BCM+92].

6.5 Complexity

Let M = (S,—,I,A") be an ALCCTL model, and let ¢ be an ALCCTL
formula. |¢| denotes the “size” of the formula, that is, the number of in-
dependent subformulas of ¢. When calling GeneralFormula.check for an
ALCCTL model M and a state s, the check is done for the entire model,
and then s is tried to be located in the result set. Since the result set is an
ArrayList, and its contains method scales in a linear fashion, the complex-

ity is O(|S)).

// Formula.check(GeneralModel, String state)
List<String> states = check(model);

// Arraylist.contains is in linear time: |[S|
return states.contains(state);

Collecting this result set required iterating over all states and checking if
the formula is annotated to them. The iteration costs |S|, obviously, leaving
the complexity unchanged with O(|S]-2) = O(|S]). Since the predicates
are implemented as a HashSet, the contains method of which only takes
constant time, looking for the annotation does not increase the complexity.

// Formula.check(GeneralModel)

// base reduction

Formula tmp = translate();

// ALCCTL string of the current formula
String curALCCTL = tmp.toALCCTL();

model = tmp.annotate(model);
// iterate over all states: |S]|
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for (int i=0;i<model.getStates().size();i++) {
// HashSet.contains is in constant time
if (model.getStates().get(i).getPredicates().contains(curALCCTL))
result.add(model.getStates().get (i) .getName());
}

return result;

Now, all that is left to do is to annotate every subformula of ¢ to the
states of M. Thus, M,s = ¢ € O(|S|+ |¢|-op) for a formula ¢, where
op is the maximum complexity class of all ALCCTL operators: op =ger
O(A)+OCﬂ+O(u)+O(E)+O(EG%H?URU+OCD+OC$+“.:
O (max (A, -, EG, 3, ...)).

To narrow down op, let’s look at some of those operators more closely.
The Boolean operators like A or V only require constant time for each
state, so we can safely disregard them when looking for the maximum. The
operators T and = , as well as M and U are all in |S] - |A!|?. The
complexities of the three base temporal operators EX, EG and EU are all
in O(]S)? - |A]) for concepts.

The other temporal operators are also within that complexity class, even
though they are translated to a combination of several operators. I will
show this for the operator AF, the proof for the rest is analogous: Since
AFYy = =EG—) for a concept ¢, O(AF) = O(-EG=). But O(-EG-) =
O(—) + O(EG) + O(—), and (O(=) + O(EG) + O(—)) € O(EG)! Therefore,
O(AF) € O(EG).

The last two operators that require attention are the role operators 4 and V.
They have a complexity of O(|S|-]A![?) and as such the maximum complexity
of all operators, for |A’| is usually greater than |S| by a factor of two to six.
This leads to a total complexity of |S| + |¢] - |S| - |AT]> = |¢] - |S]| - |ATJ]3.

// FormulaAnd:
String arglALCCTL = argl.toALCCTL();
String arg2ALCCTL = arg2.toALCCTL();
// iterate over all states: |S|
for (int i=0;i<model.getStates().size();i++)
// HashSet methods ’contains’ and ’add’ require only constant time
if (model.getStates().get(i).getPredicates().contains(arglALCCTL)
&& model.getStates() .get (i) .getPredicates().contains(arg2ALCCTL))
model.getStates() .get (i) .getPredicates() .add (curALCCTL) ;

// ConceptEU:
// aux. method:
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private boolean checkUntil(String a, String b, String concept,
GeneralModelState s) {
if (s.getMarked()) return false; // termination case
s.setMarked(true) ;
// ModelState.interpret only requires constant time,
// as does HashSet.contains
if (s.interpret(b).contains(concept))
return true;
boolean tmp = false;
if (s.interpret(a).contains(concept))
// continue with the recursion; but |S| has already been counted
for (int j=0;j<s.getSuccessors().size();j++)
tmp = tmp || checkUntil(a, b, concept, s.getSuccessors().get(j));
return tmp;

protected GeneralModel annotate(GeneralModel model) {
String curALCCTL = toALCCTL();
String arglALCCTL = argl.toALCCTL();
String arg2ALCCTL = arg2.toALCCTL();
// iterate over all states: |[S|
for (int i=0;i<model.getStates().size();i++) {
List<String> tmp = new ArrayList<String>();
// iterate over Deltal: |Deltall
for (int j=0;j<model.getDeltal().size();j++) {
// iterate over all states: |[S]|
// this is at most as complex as the recursive call, however,
// so it does not influence the overall complexity
for (int k=0;k<model.getStates().size() ;k++)
model.getStates() .get (k) .setMarked(false);
String concept = model.getDeltal().get(j);
// the recursion runs over all states, but terminates if
// one state is visited twice: |[S]|
if (checkUntil(arglALCCTL, arg2ALCCTL, concept,
model.getStates() .get(i)))
// Arraylist.add ist constant
tmp.add (concept) ;

}

// HashMap.put ist constant

model.getStates() .get (i) .getInterpretations() .put (curALCCTL, tmp);
}
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return model;

3

// FormulaEU:
// aux. method:
private boolean checkUntil(String a, String b, GeneralModelState s) {
if (s.getMarked()) return false;
s.setMarked (true) ;
// constant time
if (s.getPredicates().contains(b))
return true,
boolean tmp = false;
if (s.getPredicates().contains(a)) {
// continue with the recursion; but |S| has already been counted
for (int j=0;j<s.getSuccessors().size();j++)
tmp = tmp || checkUntil(a, b, s.getSuccessors().get(j));
}

return tmp,

protected GeneralModel annotate(GeneralModel model) {
String curALCCTL = toALCCTL();
String arglALCCTL = argl.toALCCTLQ);
String arg2ALCCTL = arg2.toALCCTL();
// iterate over all states: |[S|
for (int i=0;i<model.getStates().size();i++) {
// iterate over all states: |[S]|
// this is at most as complex as the recursive call, however,
// so it does not influence the overall complexity
for (int j=0;j<model.getStates().size();j++)
model.getStates() .get(j) .setMarked(false);
// the recursion runs over all states, but terminates if
// one state is visited twice: [S|
if (checkUntil(arglALCCTL, arg2ALCCTL, model.getStates().get(i)))
// HashSet.add ist constant
model.getStates() .get (i) .getPredicates() .add(curALCCTL) ;
}
return model;

}

// FormulaSubset:
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String arglALCCTL = argl.toALCCTL();
String arg2ALCCTL = arg2.toALCCTL();
// iterate over all states: |S]|
for (int i=0;i<model.getStates().size();i++) {
boolean all = true;
// ModelState.interpret only requires constant time:
// It calls HashMap.get, which requires constant time.
List<String> a = model.getStates().get(i).interpret (arglALCCTL);
List<String> b = model.getStates().get(i).interpret(arg2ALCCTL);
// iterate over (possibly all of) Deltal: |DeltalIl
for (int j=0;j<a.size();j++)
// Arraylist.contains is linear: |Deltall
if (!'b.contains(a.get(j)))

all = false;
// HashSet.add ist constant
if (all)

model.getStates() .get (i) .getPredicates() .add(curALCCTL) ;

// ConceptAnd:

String arglALCCTL = argl.toALCCTL();

String arg2ALCCTL = arg2.toALCCTL();

// iterate over all states: |S]|

for (int i=0;i<model.getStates().size();i++) {
// ModelState.interpret only requires constant time:
// It calls HashMap.get, which requires constant time.
List<String> a = model.getStates().get(i).interpret(arglALCCTL);
List<String> b = model.getStates().get(i).interpret(arg2ALCCTL);
// ArraylList.retainAll requires n~2: |Deltall"2
a.retainAll (b);
model.getStates() .get (i) .getInterpretations() .put (curALCCTL, a);

// ConceptForall:
// Semantic: FORALL R.C"I(s) =_def {a ELEMENT Deltal |
//  FORALL b.(a,b) ELEMENT R"I(s) -> b ELEMENT C"I(s)}
String argALCCTL = arg.toALCCTL();
// iterate over all states: |S|
for (int i=0;i<model.getStates().size();i++) {
List<String> result = new ArrayList<String>();
// ModelState.interpret only requires constant time:
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// It calls HashMap.get, which requires constant time.
List<String> C = model.getStates().get(i).interpret (argALCCTL);
// HashMap.get requires only constant time
GeneralModelRole role = model.getStates().get(i).getRoles().get(name);
// The role might be unknown in this state - but since it can be known
// in other states, this is not an error! So simply check for it.
if ((role !'= null) && (C.size() > 0)) {
boolean all = true;
// interate over Deltal: |Deltall
for (int j=0;j<model.getDeltal().size();j++) {
String a = model.getDeltaI().get(j);
Set<String> B = role.get(a);
// left-hand-side of the implication is false:
// implication itself is true
if (B == null) {
result.add(a);
} else {
Iterator<String> bs = B.iterator();
// iterate over (possibly all of) Deltal: |Deltall
while (bs.hasNext()) {
String b = bs.next();
// ArraylList.contains requires linear time: |DeltaIl
if (!C.contains(b)) {
all = false;
break;
} ¥ if (all) result.add(a);
} if (tall) break;
}
if (all)
model.getStates() .get (i) .getInterpretations() .put(
curALCCTL, result);
o}

Proposition 4 (Complexity of the ALCCTL Model Checking Algorithm)
M,s = ¢ € O(|g]-|S|-|AT]®) (the complexity of checking ¢ against M in
state s).

By changing the result type of the ModelState.interpret method
from ArrayList to HashSet, the complexity could be decreased to
O (|¢] - |S| - |AT|?). However, this would make iterating over the result more
expensive (even though still constant). And since it is highly unrealistic that
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the iteration would actually require A? x Al x AT in its entirety, the real-
world performance would decrease, not increase. Thus, I have decided to
accept the higher complexity in exchange for better run-time results.

Since model checking CTL is P-complete with an upper bound of O(|S] -

|¢|) [Sch02], and the context satisfiability problem in ALC is ExpTime-
complete [Sch91, Don02] with an upper bound exponential time in the size of
¢ and the TBox (= |A’|) [DMO00], it seems unlikely that the complexity of the
ALCCTL model checking algorithm could be decreased significantly. Even
though the context satisfiability problem is more complex than the model
checking problem, it is clear that model checking ALCCTL has to depend on
the size of Al at some point.
ALCCTL can be reduced to CTL, so the complexity of model checking there
is a lower bound for ALCCTL. ALCCTL also includes roles and set relations
with a domain of A! x A!, which suggests a complexity close to that of
proposition 4.

6.6 Tests

The test configuration and testing methods are the same as described in
chapter 5.5. The test performed was to check every model against 27 formu-
las, using the model checking algorithm for ALCCTL and the command-line
tool ALCCTLModelChecking.

Table 6.3 lists the base reduced formulas into which the formulas that
where actually checked were transformed in the first step. The model check-
ing time for each model can be seen in table 6.5, while the memory require-
ments are displayed in table 6.4. Table 6.6 shows the model checking results.
In tables 6.7 to 6.11 the counter examples are listed.

Graphs that show how the algorithmic approach scales with respect to the
size of the model or the number of concepts are shown in figures 7.4 and 7.5,
chapter 7. They compare the scaling of the two model checking approaches.

In contrast to the reduction approach (see chapter 5), the ALCCTL model
checking algorithm did produce a result for every test formula. However, ad-
ditional testing with formulas containing the operator AF' lead to a Java ex-
ception Out0fMemoryError: Java heap space. Unfortunately, even increasing
the maximum heap size to 1.5 GB (!) did not solve this problem. Reformu-
lating the formula, or, better yet, implementing the AF operator directly
without resorting to the base reduction, would probably prove more effec-
tive.

Many of the counter examples listed are shortened: Since the entire re-
sult sets of the failed relation are produced, they can get quite lengthy. The
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Number ‘ Base reduced formula

Formulal | LC T

Formula2 | EG(LCT)

Formula3 | EX(LCT)

Formula4 | E [true UlC T]

Formulab | LC EGL

Formula6 | LC EXT

Formula7 | LC E[TUT]

Formula 8 | true

Formula 9 | —true

Formula 10 | true A true

Formula 11 | true A false

Formula 12 | true V false

Formula 13 | false V false

Formula 14 | T = T

Formula 15 | T = L

Formula 16 | definedTopic C E [T U (exemplifiedT opic M T)]

Formula 17 | definedTopic C E [T U (exempli fiedT opic LI —T)]

Formula 18 | definedT opic T EX exempli fiedT opic

Formula 19 | definedTopic C E [T U exempli fiedT opic]

Formula 20 | definedTopic C E [definedT opic U exempli fiedT opic]
Formula 21 | definedTopic C =E [T U —exempli fiedT opic]

Formula 22 | =F |trueU — (defmedTopic C EXexemplifiedTopic)}
Formula 23 | —=F |true U — (defmedTopic CE[TU exemplifiedTopic])]
Formula 24 | =F |trueU — (defmedTopic C E[definedT opic U exemplifiedTopicD}
Formula 25 | —=F |true U — (defmedTopic C-E[TU ﬂexemplifiedTopic])}
Formula 26 | —=F |true U — (defmedTopic CE[TU EItopicOf.Example])}
Formula 27 | =E [true U = (VtopicO f.De finition T E [T U 3topicO f.Fragment])]

Table 6.3: Base Reduced Test Formulas.

TinyTest ‘ Test ‘ EZKom ‘

Fuzzy ‘ BIS

7.3mb | 8.7mb | 22.1mb | 28.0mb | 8.7mb

Table 6.4: ALCCTL Model Checking Memory Usage (usage measured for

formula 1).
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H TinyTest ‘ Test ‘ EZKom ‘ Fuzzy ‘ BIS

Formula 1 47ms | 47ms 1s 250ms 1s 828ms | 62ms
Formula 2 47ms | 63ms 1s 500ms 2s 234ms | 78ms
Formula 3 16ms | 46ms 1s 516ms 2s 219ms | 78ms
Formula 4 47ms | 62ms 1s 781ms 2s 625ms | 94ms
Formula 5 3lms | 46ms 1s 234ms 1s 703ms | 63ms
Formula 6 15ms | 62ms 1s 531ms 2s 281ms | 78ms
Formula 7 3lms | 47ms 22s 578ms 52s 656ms | 125ms
Formula 8 15ms | 32ms 610ms 953ms | 47ms
Formula 9 Oms | 46ms 922ms 1s 328ms | 46ms
Formula 10 15ms | 47ms 969ms 1s 360ms | 62ms
Formula 11 3lms | 46ms 1s 344ms 1s 750ms | 62ms
Formula 12 15ms | 46ms 1s 282ms 1s 750ms | 62ms
Formula 13 16ms | 46ms 984ms 1s 344ms | 63ms
Formula 14 16ms | 47ms 4s 907ms 10s 16ms | 62ms
Formula 15 3lms | 46ms 1s 219ms 1s 781ms | 63ms
Formula 16 47ms | 78ms | 26m 6s 797ms | 54m 25s 516ms | 859ms
Formula 17 47ms | 78ms | 26m 9s 297ms | 54m 36s 750ms | 985ms
Formula 18 32ms | 47ms 1s 453ms 2s 140ms | 78ms
Formula 19 3lms | 78ms | 25m 55s 578ms | b4m 16s 203ms | 843ms
Formula 20 16ms | 63ms 2s 672ms 5s 87bms | 93ms
Formula 21 47ms | 78ms 26s 344ms 59s 390ms | 172ms
Formula 22 3lms | 63ms 2s 468ms 3s 844ms | 125ms
Formula 23 47ms | 109ms | 26m 17s 171ms | 55m 6s 250ms | 969ms
Formula 24 3lms | 78ms 3s 907ms 7s 875ms | 141ms
Formula 25 47ms | 94ms 25s 87bms 58s 937ms | 187ms
Formula 26 3lms | 109ms | 26m 9s 750ms | 55m 10s 94ms | 906ms
Formula 27 32ms | 125ms | 24m 5s 157ms | 52m 27s 47ms | 953ms
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H TinyTest ‘ Test ‘ EZKom ‘ Fuzzy ‘ BIS

Formula 1 true true | true true true
Formula 2 true true | true true true
Formula 3 true true | true true true
Formula 4 | true true | true true true
Formula 5 true true | true true true
Formula 6 true true true true true
Formula 7 true true | true true true
Formula 8 true true | true true true
Formula 9 || false false | false false | false
Formula 10 | true true | true true true
Formula 11 || false false | false false | false
Formula 12 | true true | true true true
Formula 13 || false false | false false | false
Formula 14 | true true | true true true
Formula 15 || false false | false false | false
Formula 16 | true true | true true true
Formula 17 | true true | true true true
Formula 18 | true true | true true true
Formula 19 | true true | true true true
Formula 20 | true true | true true true
Formula 21 | true true | true true true
Formula 22 || true true | false false | true
Formula 23 || true true | false false | true
Formula 24 || true true | false false | true
Formula 25 || false false | false false | true
Formula 26 || true true | false false | true
Formula 27 || false false | true false | true

Table 6.6: ALCCTL Model Checking Results.
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H Counter Example

Formula 15 || The = predicate was [false] in the following states
(=T = 1)

Intro: — {FormScript, Def, GroupStudent, ...} = 0
Def: = {FormScript, Def, GroupStudent, ..
Exa: — {FormScript, Def, GroupStudent, .
Conc: — {FormScript, Def, GroupStudent, ...} = 0
Formula 25 || The C predicate was [false] in the following states

(= definedTopic T = E[T U — exemplifiedTopic)):

Def: - {DFA} C 0

Formula 27 || The C predicate was [false] in the following states

(= V topicOf.Definition = E[T U 3 topicOf Fragment]):
Def: — {FormScript, Def, GroupStudent, ...} = {DFA}

1=
o=

Table 6.7: ALCCTL Model Checking Counter Examples: TinyTest.

counter examples for formulas 9, 11 and 13 were omitted, they all read “No
SUBSET or EQUALS found! No counterexample available.”, since the cur-
rent implementation tries to find the point of failure at the T or =
operator. It would be possible to adopt a behaviour where the counter ex-
ample negates the entire formula in such a case.

6.7 Evaluation

Quite similar to the findings in chapter 5.6, figure 6.4 shows the relation
between average model checking time (mean over all formulas) and the num-
ber of successors, interpretations and roles. This relation obviously not only
holds for CTL model export, but for ALCCTL model checking as well: Since
both have similar dependencies, this is not unexpected.

The actual speed of ALCCTL model checking is summed up in figure 6.5.
Six formulas stand out immediately: Formulas 16, 17, 19, 23, 26 and 27. The
latter two are hardly surprising: Checking roles is the computationally most
expensive operation of all formulas. The other four all have one thing in
common: When reduced to their base, each of them contains E [T U ¢]. The
difference to the similar formulas 21 and 25 is that ¢ is not negated! Checking
T U ¢ is an expensive operation because T is a very large set, which has to
be checked for every single state until ¢ holds — however, in formulas 21 and
25 this check has only to be done until a certain case is not true (specifically
there should be no example). Since it is very likely that this case is indeed
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H Counter Example

Formula 15

The = predicate was [false] in the following states
(=T = 1)

L1P1: = {FormSlide, L1P1s, GroupStudent, ...} =
L1P2: = {FormSlide, L1P1s, GroupStudent, ...}
L1P3: = {FormSlide, L1P1s, GroupStudent, ...}
L1P1s: = {FormSlide, L1P1s, GroupStudent, ...}
L1P2s: = {FormSlide, L.1P1s, GroupStudent, ...}
L1P3s: = {FormSlide, L1P1s, GroupStudent, ...}
L2P1: = {FormSlide, L1P1s, GroupStudent, . }
L2P1E1: - {FormSlide, L1P1s, GroupStudent, .
L2P1E2: — {FormSlide, L1P1s, GroupStudent, .
L2P1E3: — {FormSlide, L1P1s, GroupStudent,
L2P2: = {FormSlide, L1P1s, GroupStudent, ...}
L2P3: = {FormSlide, L1P1s, GroupStudent, ...} =

||.a~w~uv~ Il- -l Il-
== - | ||'S®SSSS®
e

Formula 25

The C predicate was [false| in the following states
(= definedTopic T = E[T U — exemplifiedTopic)):
L2P1E1: - {DFA} C 0

L2P2: — {NFA} C 0

Formula 27

The C predicate was [false] in the following states

(= ¥ topicOf.Definition T E[T U 3 topicOf.Fragment)):
L2P1E1: - {FormSlide, L1P1s, ...} = {DFA, NFA}
L2P2: — {FormSlide, L1P1s, ...} T {NFA}

Table 6.8: ALCCTL Model Checking Counter Examples: Test.
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H Counter Example

Formula 15 | The = predicate was [false] in the following states
(=T = 1)

1.1.1.1. Uberblick N65662: — {FormScript, ...} = @
1.1.1.4.1. Feldbusse N70680: = {FormScript, ...} = 0
randbedingungen: — {FormScript, ...} = )

Formula 22 | The C predicate was [false] in the following states

(= definedTopic C EX exemplifiedTopic):

Definition von Verbindungsnetzen: — {Verbindungsnetz, Station,
Paket, Nachricht, Sender, Empfinger} = {Regelkreis}

Klassifik. von Sendern: — {konstante Raten, variable Raten} = )

Formula 23 | The T predicate was [false] in the following states

(= definedTopic = E[T U exemplified Topic]):

Definition von Verbindungsnetzen: — {Verbindungsnetz,
Station, Paket, Nachricht, Sender, Empfinger} C
{Ein Switch mit drei Verbindungen, Sendeanteil, Verspatung,
Sendedauer, Frithe Tokenankunft, ...}

Klassifikation von Sendern: — {konstante Raten, variable Raten}
C {Ein Switch mit drei Verbindungen, Sendeanteil, ...}

Formula 24 | The C predicate was [false] in the following states
(= definedTopic T E[definedTopic U exemplified Topic]):
Definition von Verbindungsnetzen: — {Verbindungsnetz,
Station, Paket, Nachricht, Sender, Empfinger} C ()
Klassifikation von Sendern: — {konstante Raten, variable Raten}
C {Variable Raten bei Audio- und Videodaten}

Formula 25 || The T predicate was [false] in the following states

(= definedTopic = = E[T U — exemplified Topic)):

Definition von Verbindungsnetzen: — {Verbindungsnetz,
Station, Paket, Nachricht, Sender, Empfianger} T ()

Klassifikation von Sendern: — {konst. Raten, var. Raten} C ()

Formula 26 | The C predicate was [false] in the following states

(= definedTopic = E[T U EXISTS topicOf. Example]):

Definition von Verbindungsnetzen: — {Verbindungsnetz,
Station, Paket, ...} C {Sendeanteil, ...}

Klassifikation von Sendern: — {konstante Raten,
variable Raten} C {Sendeanteil, Verspitung, ...}

Table 6.9: ALCCTL Model Checking Counter Examples: EZKom.
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H Counter Example

Formula 15

The = predicate was [false] in the following states

(=T = 1)

L1 einleitung: — {FormSlide, Irisklassifikation, ...} = 0

L1 _zwei_beispiele: = {FormSlide, Irisklassifikation, ...} = ()

Formula 22

The C predicate was [false] in the following states

(= definedTopic = EX exemplifiedTopic):

L1 linguistische_terme: — {linguistischer Term} C
{Einparken eines Autos, Qualitatsbestimmung}

L1 _grundlegende_erklaerungen: — {Fuzzy-Logik, Erweiterung der
zweiwertigen Logik, ...} C {Einparken, Qualititsbestimmung}

Formula 23

The C predicate was [false] in the following states
(= definedTopic = E[T U exemplified Topic]):
L1 linguistische_terme: — {linguistischer Term} C
{System mit einfacher Regel, charakteristische Funktion, ...}
L1 _grundlegende_erklaerungen: — {Fuzzy-Logik, Erweiterung der
zweiwertigen Logik, ...} C {System mit einfacher Regel, ...}

Formula 24

The C predicate was [false] in the following states

(= definedTopic T E[definedTopic U exemplified Topic]):
L1_linguistische_terme: — {linguistischer Term} C ()
L1_grundlegende_erklaerungen: — {Fuzzy-Logik, ...} T ()

Formula 25

The C predicate was [false] in the following states
(= definedTopic T — E[T U = exemplifiedTopic]):

L1 linguistische_terme: — {linguistischer Term} C ()
L1_grundlegende_erklaerungen: — {Fuzzy-Logik, ...} T ()

Formula 26

The C predicate was [false] in the following states
(= definedTopic = E[T U 3 topicOf.Example]):
L1 linguistische_terme: — {linguistischer Term} C
{System mit einfacher Regel, charakteristische Funktion, ...}
L1_grundlegende_erklaerungen: — {Fuzzy-Logik, ...} C
{System mit einfacher Regel, charakteristische Funktion, ...}

Formula 27

The C predicate was [false] in the following states

(= ¥ topicOf.Definition = E[T U 3 topicOf.Fragment)):

L1 _grundlegende_erklaerungen: — {Irisklassifikation, ...} C
{Aufgabenstellung Iris-Klassifikation, Mamdani-Regler, ...}

Grundlegende Erklarungen: — {Irisklassifikation, ...} C
{Aufgabenstellung Iris-Klassifikation, ...}

Table 6.10: ALCCTL Model Checking Counter Examples: Fuzzy.
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H Counter Example

Formula 15 | The = predicate was [false] in the following states
(=T = 1)
pu_online_script_name_services_directory_services_intro_01:

— {DeviceOnline, Weiterleitung von Anfragen, ...} = )
pu_online_script_name _services_directory_services_dns_01:

= {DeviceOnline, Weiterleitung von Anfragen, ...} = )

Table 6.11: ALCCTL Model Checking Counter Examples: BIS.

ALCCTL Model Checking: Mean time/Mean number of (successors, interpretations,
roles) per state

1000000

100000

10000
1000
100
10
m B
1+ r r r T

TinyTest Test EZKom Fuzzy BIS

Figure 6.4: ALCCTL Model Checking: Relation of avg.time to
Z{succ,interp,roles}g (log Scale).
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Figure 6.5: ALCCTL Model Checking: time.
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not true, the T U ¢ check terminates quickly. In the four formulas mentioned
above, ¢ is far less likely, so the U check has to be done for quite some time
— resulting in the obvious poor performance.

A simple way to avoid these T U ¢ checks would be to eliminate the base
reduction and check for whatever operator (E'F, in this case) was reduced to
E[TU ¢] itself.

The counter examples extracted for the failed model checks all appear
to be quite helpful in tracking down the problem. This illustrates that the
current approach, where the point of failure is looked for at the T or =
operator, can be rather successful, more so if it were adapted for formulas
that do not contain this operator. However, there are many possible formulas
where this approach would fail, for example for the negation of any of the
given formulas!



Chapter 7

Comparison and Analysis

Figure 7.3 shows an effect already observed in chapter 6.7: Four formulas
take above-average time with the algorithmic approach. This is due to the
disadvantageous base reduction.

Figure 7.4 shows how the two approaches scale. The tests were run on

nine models with different numbers of states (between 10 and 5000), and
with one definition and one example (of the same concept) in each 10 states.
Checked was formula 18 (L = T). Since performance in relation to the
length of the formula is completely dependant on the operators used, and
the performance of different operators has already been tested, the scaling
was not done along the size of the formula.
Note that the y-axis scale is logarithmic, showing an exponential performance
decrease for the CTL model checker, and that the CTL approach did not
produce results for the last two models. Instead, it produced the following
error:

Assertion failed: h->array, file heap.c, line 122

The total time values for CTL range from 250ms to an impressive 5 hours (or
about 8 hours before announcing the error for the model with 2000 states),
while those for ALCCTL range from 31ms to a little less than 5 seconds.
Model extraction, export and parsing are not included in those numbers.

TinyTest | Test | EZKom | Fuzzy | BIS
1.2mb | 6.7mb | - ~ ] 0.6mb

Table 7.1: Model Checking Memory Usage Comparison (CTL usage —
ALCCTL usage: Memory usage advantage of the algorithmic approach).
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| TinyTest | Test | EZKom | Fuzzy | BIS
Formula 1 344ms | 3s 203ms - — | 2s 250ms
Formula 2 328ms | 3s 250ms — - 641ms
Formula 3 3599ms | 3s 180ms — — 656ms
Formula 4 359ms | 3s 297ms — — 640ms
Formula 5 266ms | 3s 276ms — — 672ms
Formula 6 376ms | 3s 313ms — — 641ms
Formula 7 266ms | 3s 328ms — - 625ms
Formula 8 376ms | 3s 205ms — - 656ms
Formula 9 313ms | 3s 423ms — — 689ms
Formula 10 376ms | 3s 328ms — — 673ms
Formula 11 266ms | 3s 438ms — — 688ms
Formula 12 360ms | 3s 345ms — — 657ms
Formula 13 375ms | 3s 439ms — — 703ms
Formula 14 375ms | 3s 328ms — - 657ms
Formula 15 360ms | 3s 454ms — - 687ms
Formula 16 453ms — — — -593ms
Formula 17 453ms — — — -735ms
Formula 18 265ms | 3s 438ms - — 172ms
Formula 19 516ms — — — -593ms
Formula 20 453ms — — - 173ms
Formula 21 297ms | 3s 422ms — - 93ms
Formula 22 344ms | 3s 391ms — - 125ms
Formula 23 531ms — — — -703ms
Formula 24 563ms - — — 109ms
Formula 25 344ms | 3s 968ms — — 78ms
Formula 26 || 3m 56s 156ms — - - -
Formula 27 || 3m 50s 405ms — — - —

Table 7.2: Model Checking Test Comparison (CTL time — ALCCTL time:

Speed advantage of the algorithmic approach).
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Figure 7.5: Model Checking Comparison: Scaling Concepts.

The figure shows that the CTL reduction approach does not scale well
with an increasing number of states. Adding more concepts to a model
makes this even worse, since it increases the number of variables. Figure 7.5
shows the same comparison as figure 7.4, but for a number of 10 to 5000
different concepts, with 10 states. This time, the CTL model checker refused
to cooperate from 500 concepts upwards (with the same error as above after
about 8 hours).

When asked to summarise the test results of the two ALCCTL model
checking approaches in a few words, I would be forced to say about the
reduction approach: “unsuitable”, and about the algorithmic approach: “us-
able, but in need of enhancement”.

The fact alone that the reduction approach did not work in all test cases
puts it “out of the game”, so to speak. But the algorithmic approach, too,
is far from being perfect. Several test cases took a horrendous amount of
time, and two additional tests with AF failed completely. And then there is
the whole counter example issue: There are still many cases where a useful
counter example is not available.

Most of the performance issues could be corrected by abandoning the
base reduction and implementing all temporal operators (or at least most of
them). But even then for large models there will still be formulas that require
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several seconds up to a few minutes to check — too long for a truly interactive
environment. Some of that time might be eaten up by the slow Java string
processing, which is another avenue for optimisation. But nonetheless, for
an application that provides direct user interaction, a few seconds are the
utmost possible delay — the average should be measured in milliseconds.
Such an application might graphically show the user in which states of a
model a formula holds, and if the user makes some changes to the formula,
the resulting validity changes are highlighted. An application like this might
in fact even be feasible without too many optimisations: Small changes to
a formula imply that after each change not the entire formula has to be re-
checked, but only a partial subformula. In the meantime, for more demanding
uses, at the very least some progress information should be provided for
lengthy operations.

Performance optimisations aside, I believe that the true usability problem
is the counter examples: If a user has no convenient way of finding the faults
in a formula, he is not going to use the system. Error recovery is one of the
most important features in modern computer programs — doubly so if the
error is the user’s. But even if failing the model checking is the desired effect
of a formula, the user will probably still want to check if the point of failure
is the correct one. All that hinges on the quality of the counter example.

There is one more small issue that slightly impedes usability: The formula
syntax is somewhat cumbersome. It would be far more convenient for a user
if he could (at least as an alternate form of input) arrange his formula by
dragging components or even entire subformulas from a component palette
into place. That is, of course, a prerogative of a graphical user interface.

A small feature that might be nice to have is some kind of “mostly” op-
erator. Especially with large models, complicated formulas tend to be true
most of the time (that is, if they are true at all), but fail in very few spe-
cial cases. The model checking algorithm correctly marks such formulas as
false — however, it is quite possible that one or two exceptions to the formula
would be desired, e.g. for special cases in an introduction or something like
that. Of course, these cases could be coded explicitly into the formula, but
that is both tedious and complex, greatly increasing time and effort require-
ments for the user and the model checker. An operator that allows for some
deliberate error factor, maybe for one or two percent of the states, would
be of use here. To illustrate that behaviour, imagine a model where for
every definition follows an example directly afterwards, except in the intro-
duction: Here, there are a small definition and its example both in the same
state. A simple formula to check for the example-after-definition constraint
is AG (de finedTopic C EX exemplifiedT opic). Allowing the exception on
a general level would be
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AG (def’medTopic C (exemplifiedTopic U EX exemplif@'edTopic)), but
allowing it specifically for the introduction would require something along
the lines of AG ((defmedTopic C EX exemplifiedTopic) Vv
((definedTopic A FhasTopic. Introduction) C exemplifiedTopic)). Us-
ing a “mostly” operator ®, it could be written (even though not with the
same precision) as © (de finedTopic T EX exempli fiedTopz'c).
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Chapter 8

Conclusion

In the course of this Diploma Thesis I have described, implemented, tested
and analysed two different approaches to the model checking problem for
ALCCTL. The analysis has shown the first approach, reduction to CTL, to
be of only limited use. The second approach, reimplementation of the model
checking algorithm for ALCCTL, has proven to be more promising. Both
methods allow for several avenues of optimisation, however, so a final verdict
cannot be reached at this time. Model checking ALCCTL directly has the
advantage of working on the “natural structure” of ALCCTL models, while
reducing such a model to CTL enlarges the structure exponentially. On the
other hand, logical optimisations in CTL might upset this efficiency edge.
Nonetheless, the current implementation clearly favours the algorithmic ap-
proach.

8.1 Possible Extensions and Future Work

Several issues remain open for the time being. An optimised version of the
CTL reduction is the primary concern for that approach: If it were possible
to reduce the number of variables significantly, or to represent them more
efficiently, the performance gain would probably be considerable. It is as of
yet unknown whether that possibility exists or not.

The algorithmic approach has no such central issue concerning perfor-
mance, yet one concerning usability: The extraction of a useful counter ex-
ample is the main problem here. Aspects of this problem are

e Finding the relevant point of failure
e Base reduction can change a formula considerably

e Selecting a suitable error representation (single example vs. all errors)

115
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e Java String related performance loss

(see chapter 6.4). Without a working counter example, the usability is
severely limited.

It can be seen that abandoning or at least restricting the base reduction
would at the same time solve two different problems. It would increase
performance (especially for the AF case described in chapter 6.7), and it
would improve recognisability of the counter example formula. It would,
unfortunately, require the implementation of no less than 10, and up to 14
operators (depending on whether the B operator would still be represented
by other operators).

Among other options for enhancement is memory management: A manual
release of obsolete temporary objects would decrease the total memory usage.
Since A, concepts, role and state names are all string based, avoiding the
slow Java String implementation and using a more efficient representation,
e.g. a numbered index-based one, would certainly prove beneficial as well.

In addition to the optimisations, there are some possible extensions to
the model checking process. One possibility is to combine the two model
checking approaches into a hybrid algorithm: The part that is expensive to
reduce to CTL is checked directly in ALCCTL, and the result along with
the rest of the formula is then reduced and checked in CTL. Two points
of separation appear feasible: Either just after the T or = operator,
thus putting the concept part on ALCCTL turf and the formula part in CTL
territory. Or after the last role operator, which is usually the main reason for
the exponential growth of the CTL formula. The first options would be easier
to implement because on formula level there would have to be no translating
of sets to Boolean variables.

As mentioned in 7, it is sometimes hard to make complicated formulas
work for large models: There simply is no room for exceptions. One possible
cure is the introduction of a “mostly” operator that allows for a certain num-
ber of exceptions to the formula, e.g. 1%. Another possibility is to annotate
the result with a statistical probability, such as “the formula is valid in 97% of
all cases”. Theoretically probability information could be annotated to any
initial concept (coming from the ABox assertions of the semantic model), and
thus an overall probability for the entire formula could be derived — maybe
in combination with the aforementioned statistical probability. For example,
if an E'F operation is valid for one out of three successors at a given state,
the probability that the user will actually select this path is % If one of these
paths is e.g. an excursion, it could be initialised with a lower base probability
like m, giving the E'F operation an overall probability of 15—2

There are still many other possible extensions, optimisations and options
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to boost performance and usability of ALCCTL model checking.
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Appendix A

Manual for Model Checking
ALCCTL

A.1 Installation requirements

To be able to use the model checking tools (namely the command-line tool
ALCCTLModelChecking and the graphical user interfaces MCGUI_CTL and
MCGUI_ALCCTL), an installed version of Java 1.5 is required, includ-
ing a correctly set CLASSPATH. To be able to use the included batch-files
(Windows®), the PATH needs to include the directory where java.exe and
javac.exe are located. If the batch-files are not used, the CLASSPATH needs
to include a reference to the CUP v.11 runtime jar file (located in /Appli-
cation/Program/ALCCTL/Parser). Model extraction of Lmml models also
requires a copy of the Lmml DTD files in the directory /wwrpub/schema.
No other tools or resources are needed, and apart from the Java Runtime
Environment (or Java Software Development Kit) no software needs to be
installed.

A.2 Command-line Tool ALCCTLModel-
Checking

The tool ALCCTLModelChecking has the following syntax:
ALCCTLModelChecking [formulafile] [-xml|-1lmml|-ml3 file]
[-output file]l [-savemodel file] [-savesvg file]
[-noce] [-allstates] [-debug] [-notimer]
[-savectl file] [-noroles]
[-ctl toolpath ctlmodel ctlfile]
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[formulafile] A file containing one or more ALCCTL formulas.

-xml [modelfile] An XML file containing the model.

-1mml [module.xml] A main Lmml module file. Alternative to -xml.

-m13 [cmain.xml] An <M L3> cmain file. Alternative to -Imml.

-output [filename] (opt.) Write the output to a file. Disables time measurement.

-savemodel [xmlfile] (opt.) Save the model to an XML file.
-savesvg [svgfile] (opt.) Save an SVG view of the model.

-noce (opt.) Do not collect counter example information.

-allstates (opt.) Check all states, not just the starting states.

-debug (opt.) Display more detailed status information.

-notimer (opt.) Do not measure the time requirements.

-savectl [ctlfile] (opt.) Save a CTL reduction of the model.

-noroles (opt.) Do not include roles in a CTL model. Used in

combination with -savectl.

-ctl [toolpath] Use CTL reduction and a CTL tool instead of
[ctlmodel] the ALCCTL model checking algorithm.
[ctlfile] (opt.) [ctlfile] is generated automatically from the

base model [ctlmodel].

A.3 Graphical User Interfaces MCGUI_CTL
and MCGUI_ALCCTL

Figure A.1 shows the model checking graphical user interface for the CTL
reduction. In the Formula box, the user can either enter the formula directly,
or load a text file with one or more formulas. In the Model box, the user
can load a model from a previously saved XML file. In theory, he could
also extract a model from an Lmml or <M L*> source. However, there is an
unfixed Java bug (as of Java 1.5.0-06) that produces an error during the XSL
transformation when a Java Swing window is open. Until that bug is fixed
(or a workaround is found), the model extraction is only available via the
command-line interface ALCCTLModelChecking (see above). In the Model
Checking box, the user can select a filename for the CTL model, and for
the CTL model that includes the formula. He also has to select an external
CTL model checking tool such as NuSMV. If the formulas he wants to check
do not contain roles, the user can also check the “No Roles in Formula(s)”
option, which will exclude any roles from the CTL model export.
The button “Run Model Checking” does just what it says — and displays the
results in the Result box.

Figure A.2 shows the model checking graphical user interface for the
ALCCTL algorithmic model checking. The Formula and Model boxes are
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Figure A.1: Screenshot of the CTL reduction GUL.
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Figure A.2: Screenshot of the ALCCTL algorithmic GUI.



130 APPENDIX A. MANUAL FOR MODEL CHECKING ALCCTL

the same as above (including the Java bug!). The Model Checking box offers
different options, however. The user can select whether or not he would
like to have a counter example available, and whether or not he wants only
the initial states (starting states) to be checked. He can choose the save
the model to an XML file (this options is of little use as long as the model
extraction does not work with the GUI). He can also choose to save an SVG
view of the model, and an SVG view of the model checking process itself.
Again, the appropriate button starts the model checking process, and the
result is displayed in the Result box.

A.4 Formula Syntax

An ALCCTL formula follows the syntax rules specified in chapter 2.4. How-
ever, a few things should be noted:

e Constants are denoted in capital letters: TRUE, FALSE, TOP, BOT-
TOM.

e The same is true for operators: SUBSET, EQUALS, AND, OR, NOT,
IMPLIES.

e Temporal operators are denoted as usual: AF, EX, E[U |, ....
e Role quantors are also capitalised: FORALL, EXISTS.

e AND, OR and NOT can be used both for formulas, where they are
interpreted as Boolean operators, and for concepts, where they are
interpreted as the set intersect, union and complement.

e The names of atomic concepts and roles must start with either an un-
derscore or a letter, followed by underscores, dashes, letters or numbers.

e White space in a formula is generally ignored, except when reading
multiple formulas from a file: Then a linebreak separates two formulas.

e The operator NOT has the strongest binding, followed by the role quan-
tors. AND and OR are weaker, followed by the temporal operators.

IMPLIES is still weaker, while SUBSET and EQUALS have the weak-
est binding priority.

e Parenthesis () can be used to circumvent default binding priorities.
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A.5 Predefined Concepts and Roles

Concepts \ | Roles \ \
Name \ Value \H Name \ Concept 1 \ Concept 2
defined Topic title scaleTo scaling id
exemplified Topic | title hasScaling id scaling
Fragment id topicOf title id
Hint id hasTopic id title
Algorithm id defined At id title
Analogy id exemplifiedAt | id title
Declaration id

Definition id

Demonstration id

Question id

Answer id

Description id

Example id

Explanation id

[lustration id

Proof id

Proposition id

Reflection id

Remark id

Task id

Simulation id

Theorem id

A.6 Lmml and <M L*>> Modules

Lmml modules consist of one or more XML source files, formula graphics and
other resources. For the purposes of model checking, only the XML sources
are relevant: Namely the main module file called module.xml. It is this file
that must be referred to when extracting model information from an Lmml
module.

Similar to Lmml modules, <M L3> modules include a collection of re-
sources that can be discarded for model checking. There are, however, two
main xml files, one for the content information (called cmain.xml), and one
for the didactic information (called dmain.xml). Model extraction makes use
of the first one, cmain.xml.
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<!DOCTYPE model [

1>

<!ELEMENT
<!ATTLIST
<IELEMENT
<!ELEMENT
<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST
<!ELEMENT
<IATTLIST
<!ELEMENT
<!ATTLIST
<IELEMENT
<IATTLIST
<!ELEMENT
<IATTLIST
<!ELEMENT
<!ATTLIST

<IELEMENT
<IATTLIST

model (states, deltal)>

model source CDATA #IMPLIED>

states (statex)>

deltal (d_item*)>

state (successor*, interpretation*, predicatex*, rolex)>

state name CDATA #REQUIRED
startingState (yes|no) #IMPLIED>

d_item EMPTY>

d_item value CDATA #REQUIRED>

role (r_itemx)>

role name CDATA #REQUIRED>

successor EMPTY>

successor name CDATA #REQUIRED>

interpretation (i_itemx)>

interpretation name CDATA #REQUIRED>

predicate EMPTY>

predicate name CDATA #REQUIRED>

r_item EMPTY>

r_item conceptl CDATA #REQUIRED
concept2 CDATA #REQUIRED>

i_item EMPTY>

i_item value CDATA #REQUIRED>

Table A.1: DTD of the Model XML Structure.

A.7T Module XML Format

Table A.1 lists the DTD of the module XML format. Both r_items and
i_items refer to the elements of Al: The d_items.

A.8 Interfaces, Extensions and Options

There are several points, where the current implementation can be extended
by additional features or alternate functionality.

Alternate model implementations can be created by implementing the
GeneralModel and GeneralModelState interfaces; alternate formula imple-
mentations can be created by implementing the GeneralFormula interface
or subclassing Formula or Concept. Since all inter-class and inter-package
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exchange uses these interfaces and abstract classes, there will be no compat-
ibility problems.

To add new operators, new descendants of Formula or Concept have
to be created. However, to be able to use them, the parser needs to be
updated, too. This can be done by updating the .lex and .cup files in the
“Parser Specification” directory, and generating new Java files using JLex
and CUP (included on the CD). The generated Java files have to be copied
to “ALCCTL/Parser”.

To change the behaviour of existing operators, their annotate methods
need to be changed. To implement more operators that where — so far —
reduced to their base, their annotate method needs to be implemented. To
ensure that they are actually used, their translate method needs to be
altered as well, to disallow base reduction for this operator (see any of the
base operators for an example).

To be able to extract models from other sources than Lmml and <M L3>,
or to do the extraction differently (e.g. declaring other roles and concepts),
the class DocumentAdapter needs to be extended, and its extract method
implemented. For examples on how to proceed, see LmmlDocumentAdapter
and M13DocumentAdapter.

Similarly, to extract other models than ALCCTL models, the class
ContentAdapter needs to be subclassed and its getModel method imple-
mented. The class ALCCTLContentAdapter provides an example for that.
This method also needs to be changed if an external reasoner (like Racer)
should be called. The getModel method is the best place to call it. To cre-
ate a truly different model, the interface GeneralModel probably needs to be
implemented as well (see above, “alternate model implementations”).

To extend the generic semantic model that lies between the
DocumentAdapter and the ContentAdapter, the class Content needs to be
edited or extended. It provides lists of ABox assertions, TBox terminology,
and model states. The Javadoc documentation provides an overview of the
available fields and methods.

To be able to use another external CTL model checking tool with the CTL
reduction approach, the CTL model format needs to be updated. This can be
done by altering (or overloading) the method InputOutput.saveToCTLFile.
However, the current file format (NuSMV) supposedly is backwards compat-
ible at least with SMV, so a change may not be necessary in that case. The
alternate model checker can simply be used by specifying an alternate path
at the command-line tool or in the GUL
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Appendix B

Contents of the CD

B.1 Directory Listing

- Application
- Modules
- Lmml
- ML3
- Program
ALCCTL
- Parser
- ELearning
- Utils
- xsl
- Saves
- models

- svg
- Tests
- Tools
- CUP
- Jlex
- MSXSL
- NuSMV
- Implementation
- Javadoc
- Prototype
- PrePrototype
- ALCCTL
- Javadoc
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- Utils
- Prototype
- ALCCTL
- ELearning
Scanner & Parser
- Utils
- xsl
- Sequence Diagrams
- Source Code
- ALCCTL
- Parser
- ELearning
- GUI
- Parser Specification
- Utils
- xsl
- Presentations
- 1 Initial Presentation
- 2 Intermediary Presentation
- 3 Final Presentation
- Thesis
- LaTeX
- resources

- sources
- wwrpub
- schema

B.2 Where to Find What?

e The tools ALCCTLModelChecking, ALCCTLStatistics,
MCGUI_ALCCTL and MCGUI_CTL — These tools are all located in
/Application/Program.

e Lmml modules — Four sample Lmml modules (two test modules, two
real ones) are in /Application/Modules/Lmml.

e The WWR Lmml DTDs required for Lmml model extraction — They
are located in /wwrpub/schema.

o <ML3> modules — A sample <M L3> module is located in /Applica-
tion/Modules/ML3.
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XML model files — Extracted XML model files of those modules are in
/Application/Saves/models.

CTL model files — Exported CTL model files of those modules are in
/Application/Saves/models.

SVG views — SVG views of those models can be found in /Applica-
tion/Saves/svg.

Example formulas — Some example formulas are in /Application/Tests.

The Javadoc documentation — The documentation is in /Implementa-
tion/Javadoc.

The source code — The entire source code is in /Implementation/Source

Code.
NuSMV — The tool NuSMV is in /Application/Tools/NuSMV.

The parser specification — The parser specification is in /Implementa-
tion/Source Code/Parser Specification.

JLex and CUP — Both are in /Application/Tools in their respective
subdirectories.

Powerpoint ™ presentations about this Diploma Thesis — All presenta-

tions are in /Presentations in their appropriate subdirectories.

This thesis document — A PDF version of this document resides in
/Thesis.

The KTEX source files for this document — The ETEX source files are
in /Thesis/LaTeX.

The figures for this document — All figures are in /The-
sis/LaTeX /resources.

The sources/papers referenced in this document — All sourced that are
available for download are in /Thesis/LaTeX /sources.

The first two versions of the implementation — They are located in
/Implementation/Prototype.
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